論文の概要: On Improving the Composition Privacy Loss in Differential Privacy for Fixed Estimation Error
- arxiv url: http://arxiv.org/abs/2405.06261v4
- Date: Tue, 25 Mar 2025 06:08:30 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-26 20:12:53.059108
- Title: On Improving the Composition Privacy Loss in Differential Privacy for Fixed Estimation Error
- Title(参考訳): 固定推定誤差に対する差分プライバシーにおける構成プライバシー損失の改善について
- Authors: V. Arvind Rameshwar, Anshoo Tandon,
- Abstract要約: ユーザが複数のサンプルをコントリビュートできるデータセットの非結合部分集合の統計のプライベートリリースについて検討する。
特に、サンプル平均の$epsilon$-differentially privateリリースとデータセットの非結合部分集合におけるサンプル値のばらつきに焦点を当てる。
当社の主なコントリビューションは,ユーザのコントリビューションの抑制に基づく反復アルゴリズムです。
- 参考スコア(独自算出の注目度): 4.809236881780709
- License:
- Abstract: This paper considers the private release of statistics of disjoint subsets of a dataset, in the setting of data heterogeneity, where users could contribute more than one sample, with different users contributing potentially different numbers of samples. In particular, we focus on the $\epsilon$-differentially private release of sample means and variances of sample values in disjoint subsets of a dataset, under the assumption that the numbers of contributions of each user in each subset is publicly known. Our main contribution is an iterative algorithm, based on suppressing user contributions, which seeks to reduce the overall privacy loss degradation under a canonical Laplace mechanism, while not increasing the worst estimation error among the subsets. Important components of this analysis are our exact, analytical characterizations of the sensitivities and the worst-case bias errors of estimators of the sample mean and variance, which are obtained by clipping or suppressing user contributions. We test the performance of our algorithm on real-world and synthetic datasets and demonstrate clear improvements in the privacy loss degradation, for fixed worst-case estimation error.
- Abstract(参考訳): 本稿では、複数のサンプルをコントリビュートできるデータ不均一性の設定において、データセットの非結合部分集合の統計のプライベートリリースについて考察する。
特に、サンプル平均の$\epsilon$-differentially private releaseとデータセットの非結合部分集合におけるサンプル値のばらつきについて、各サブセット内の各ユーザのコントリビューションの数が公に知られているという仮定で取り上げる。
我々の主な貢献は、ユーザのコントリビューションの抑制に基づく反復的アルゴリズムであり、これは、標準ラプラス機構の下での全体的なプライバシー損失の減少を減らし、サブセット間で最悪の推定誤差を増大させないことを目的としている。
本分析の重要要素は, サンプル平均および分散量の推定器の感度と最悪のバイアス誤差の正確な分析的特徴であり, ユーザの貢献をクリップしたり抑制したりすることで得られる。
実世界および合成データセット上でのアルゴリズムの性能を検証し、最悪の推定誤差に対するプライバシー損失低減の明確な改善を実証する。
関連論文リスト
- The Cost of Shuffling in Private Gradient Based Optimization [40.31928071333575]
その結果, DP-ShuffleGはDP-SGDと比較して, データのシャッフル処理により過大なリスクが生じることがわかった。
我々は、プライベートな最適化に公開データサンプルを統合するハイブリッドアプローチである textitInterleaved-ShuffleG を提案する。
論文 参考訳(メタデータ) (2025-02-05T22:30:00Z) - Personalized Denoising Implicit Feedback for Robust Recommender System [60.719158008403376]
ユーザの個人的損失分布には,正常なインタラクションとノイズの多いインタラクションが明確に区別されていることを示す。
本稿では,ユーザのパーソナライズロス分布であるPLDを用いてDenoiseに対する再サンプリング戦略を提案する。
論文 参考訳(メタデータ) (2025-02-01T07:13:06Z) - Error Feedback under $(L_0,L_1)$-Smoothness: Normalization and Momentum [56.37522020675243]
機械学習の幅広い問題にまたがる正規化誤差フィードバックアルゴリズムに対する収束の最初の証明を提供する。
提案手法では,許容可能なステップサイズが大きくなったため,新しい正規化エラーフィードバックアルゴリズムは,各種タスクにおける非正規化エラーよりも優れていた。
論文 参考訳(メタデータ) (2024-10-22T10:19:27Z) - Empirical Mean and Frequency Estimation Under Heterogeneous Privacy: A Worst-Case Analysis [5.755004576310333]
微分プライバシー(DP)は、現在プライバシーを測定するための金の標準である。
異種プライバシー制約を考慮した一変量データに対する経験的平均推定とカテゴリーデータに対する周波数推定の問題点を考察する。
提案アルゴリズムは,PAC誤差と平均二乗誤差の両面から最適性を証明し,他のベースライン手法よりも優れた性能を示す。
論文 参考訳(メタデータ) (2024-07-15T22:46:02Z) - AAA: an Adaptive Mechanism for Locally Differential Private Mean Estimation [42.95927712062214]
ローカルディファレンシャルプライバシ(LDP)は、一般的なソフトウェアシステムで採用されている強力なプライバシ標準である。
本稿では, 平均効用に対処する分布認識手法である, 適応型アダプティブ (AAA) 機構を提案する。
我々は、厳密なプライバシー証明、ユーティリティ分析、そしてAAAと最先端のメカニズムを比較した広範な実験を提供する。
論文 参考訳(メタデータ) (2024-04-02T04:22:07Z) - Mean Estimation with User-level Privacy under Data Heterogeneity [54.07947274508013]
異なるユーザーは、非常に多くの異なるデータポイントを持っているかもしれない。
すべてのユーザが同じディストリビューションからサンプルを採取していると仮定することはできない。
本研究では,データの分布と量の両方でユーザデータが異なる異質なユーザデータの単純なモデルを提案する。
論文 参考訳(メタデータ) (2023-07-28T23:02:39Z) - On the Privacy-Robustness-Utility Trilemma in Distributed Learning [7.778461949427662]
本稿では,少数の対向マシンに対してロバスト性を保証するアルゴリズムによって得られた誤差を,まず厳密に解析する。
私たちの分析は、プライバシ、堅牢性、ユーティリティの基本的なトレードオフを示しています。
論文 参考訳(メタデータ) (2023-02-09T17:24:18Z) - Private Alternating Least Squares: Practical Private Matrix Completion
with Tighter Rates [34.023599653814415]
ユーザレベルのプライバシの下で、差分的プライベート(DP)行列補完の問題について検討する。
本稿では,Alternating-Least-Squares (ALS) 方式の差分型を設計する。
論文 参考訳(メタデータ) (2021-07-20T23:19:11Z) - Exploiting Sample Uncertainty for Domain Adaptive Person
Re-Identification [137.9939571408506]
各サンプルに割り当てられた擬似ラベルの信頼性を推定・活用し,ノイズラベルの影響を緩和する。
不確実性に基づく最適化は大幅な改善をもたらし、ベンチマークデータセットにおける最先端のパフォーマンスを達成します。
論文 参考訳(メタデータ) (2020-12-16T04:09:04Z) - Graph-Homomorphic Perturbations for Private Decentralized Learning [64.26238893241322]
ローカルな見積もりの交換は、プライベートデータに基づくデータの推測を可能にする。
すべてのエージェントで独立して選択された摂動により、パフォーマンスが著しく低下する。
本稿では,特定のヌル空間条件に従って摂動を構成する代替スキームを提案する。
論文 参考訳(メタデータ) (2020-10-23T10:35:35Z) - Asymptotic Analysis of an Ensemble of Randomly Projected Linear
Discriminants [94.46276668068327]
[1]では、ランダムに投影された線形判別式のアンサンブルを用いてデータセットを分類する。
我々は,計算コストのかかるクロスバリデーション推定器の代替として,誤分類確率の一貫した推定器を開発する。
また、実データと合成データの両方で投影次元を調整するための推定器の使用を実証する。
論文 参考訳(メタデータ) (2020-04-17T12:47:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。