論文の概要: Improved subsample-and-aggregate via the private modified winsorized mean
- arxiv url: http://arxiv.org/abs/2501.14095v1
- Date: Thu, 23 Jan 2025 21:03:40 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-27 14:55:56.343295
- Title: Improved subsample-and-aggregate via the private modified winsorized mean
- Title(参考訳): 自己修正ウインソリゼーション平均によるサブサンプルとアグリゲートの改善
- Authors: Kelly Ramsay, Dylan Spicker,
- Abstract要約: 修正されたWinsorized平均は、いくつかの大きな分布のクラスに対して最小限最適であることを示す。
我々は、修正されたウィンソル化平均をサブサンプル・アンド・アグリゲートのアグリゲータとみなす。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: We develop a univariate, differentially private mean estimator, called the private modified winsorized mean designed to be used as the aggregator in subsample-and-aggregate. We demonstrate, via real data analysis, that common differentially private multivariate mean estimators may not perform well as the aggregator, even with a dataset with 8000 observations, motivating our developments. We show that the modified winsorized mean is minimax optimal for several, large classes of distributions, even under adversarial contamination. We also demonstrate that, empirically, the modified winsorized mean performs well compared to other private mean estimates. We consider the modified winsorized mean as the aggregator in subsample-and-aggregate, deriving a finite sample deviations bound for a subsample-and-aggregate estimate generated with the new aggregator. This result yields two important insights: (i) the optimal choice of subsamples depends on the bias of the estimator computed on the subsamples, and (ii) the rate of convergence of the subsample-and-aggregate estimator depends on the robustness of the estimator computed on the subsamples.
- Abstract(参考訳): 我々は,サブサンプル・アンド・アグリゲートのアグリゲータとして使用されるように設計された,単変量・偏差分別平均推定器(private modified winsorized mean)を開発した。
実データ解析により、8000個の観測データを用いても、一般的な偏微分型多変量平均推定器は、アグリゲータとしてうまく機能せず、私たちの発展を動機付けていることを示す。
修正されたウインソリゼーション平均は, 敵の汚染下であっても, 複数種類の分布に対して極小に最適であることを示す。
また,修正したウィンソライズ平均は,他のプライベート平均推定値とよく比較できることを示した。
修正されたウインソリゼーション平均をサブサンプル・アグリゲータのアグリゲータとみなし、新しいアグリゲータで生成されたサブサンプル・アンド・アグリゲータの推定値に束縛された有限標本偏差を導出する。
この結果は2つの重要な洞察をもたらす。
一 サブサンプルの最適選択は、サブサンプル上で計算された推定器のバイアスに依存する。
(II) サブサンプル・アグリゲート推定器の収束率は、サブサンプル上で計算された推定器の堅牢性に依存する。
関連論文リスト
- A Geometric Unification of Distributionally Robust Covariance Estimators: Shrinking the Spectrum by Inflating the Ambiguity Set [20.166217494056916]
制約的な仮定を課さずに共分散推定器を構築するための原理的手法を提案する。
頑健な推定器は効率的に計算可能で一貫したものであることを示す。
合成および実データに基づく数値実験により、我々の頑健な推定器は最先端の推定器と競合していることが示された。
論文 参考訳(メタデータ) (2024-05-30T15:01:18Z) - On diffusion-based generative models and their error bounds: The log-concave case with full convergence estimates [5.13323375365494]
我々は,強い対数対数データの下での拡散に基づく生成モデルの収束挙動を理論的に保証する。
スコア推定に使用される関数のクラスは、スコア関数上のリプシッツネスの仮定を避けるために、リプシッツ連続関数からなる。
この手法はサンプリングアルゴリズムにおいて最もよく知られた収束率をもたらす。
論文 参考訳(メタデータ) (2023-11-22T18:40:45Z) - A Parameter-Free Two-Bit Covariance Estimator with Improved Operator Norm Error Rate [23.116373524718988]
両問題に同時に対処する2ビット共分散行列推定器を提案する。
エントリ毎に異なるディザリングスケールを利用することで、我々の推定器は演算子ノルム誤差率の改善を享受する。
提案手法は、ディザリングスケールがデータによって完全に決定されるため、いかなるチューニングパラメータも不要である。
論文 参考訳(メタデータ) (2023-08-30T14:31:24Z) - Detecting Adversarial Data by Probing Multiple Perturbations Using
Expected Perturbation Score [62.54911162109439]
逆方向検出は、自然分布と逆方向分布の差に基づいて、与えられたサンプルが逆方向であるかどうかを判定することを目的としている。
本研究では,様々な摂動後の標本の予測スコアであるEPS(pre expected perturbation score)を提案する。
EPSに基づく最大平均誤差(MMD)を,試験試料と自然試料との差を測定する指標として開発する。
論文 参考訳(メタデータ) (2023-05-25T13:14:58Z) - CARMS: Categorical-Antithetic-REINFORCE Multi-Sample Gradient Estimator [60.799183326613395]
本稿では, 相互に負に相関した複数のサンプルに基づく分類的確率変数の非バイアス推定器を提案する。
CARMSは、ReINFORCEとコプラベースのサンプリングを組み合わせることで、重複サンプルを回避し、その分散を低減し、重要サンプリングを使用して推定器を偏りなく維持する。
我々は、生成的モデリングタスクと構造化された出力予測タスクに基づいて、いくつかのベンチマークデータセット上でCARMSを評価し、強力な自己制御ベースラインを含む競合する手法より優れていることを示す。
論文 参考訳(メタデータ) (2021-10-26T20:14:30Z) - Unrolling Particles: Unsupervised Learning of Sampling Distributions [102.72972137287728]
粒子フィルタリングは複素系の優れた非線形推定を計算するために用いられる。
粒子フィルタは様々なシナリオにおいて良好な推定値が得られることを示す。
論文 参考訳(メタデータ) (2021-10-06T16:58:34Z) - Optimal Off-Policy Evaluation from Multiple Logging Policies [77.62012545592233]
我々は,複数のロギングポリシからオフ政治評価を行い,それぞれが一定のサイズ,すなわち階層化サンプリングのデータセットを生成する。
複数ロガーのOPE推定器は,任意のインスタンス,すなわち効率のよいインスタンスに対して最小分散である。
論文 参考訳(メタデータ) (2020-10-21T13:43:48Z) - Nonparametric Estimation of the Fisher Information and Its Applications [82.00720226775964]
本稿では,大きさn$のランダムサンプルからフィッシャー情報の位置推定の問題について考察する。
Bhattacharyaにより提案された推定器を再検討し、収束率の向上を導出する。
クリッピング推定器と呼ばれる新しい推定器を提案する。
論文 参考訳(メタデータ) (2020-05-07T17:21:56Z) - Estimating Gradients for Discrete Random Variables by Sampling without
Replacement [93.09326095997336]
我々は、置換のないサンプリングに基づいて、離散確率変数に対する期待値の偏りのない推定器を導出する。
推定器は3つの異なる推定器のラオ・ブラックウェル化として導出可能であることを示す。
論文 参考訳(メタデータ) (2020-02-14T14:15:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。