Solving the Turbine Balancing Problem using Quantum Annealing
- URL: http://arxiv.org/abs/2405.06412v1
- Date: Fri, 10 May 2024 11:52:40 GMT
- Title: Solving the Turbine Balancing Problem using Quantum Annealing
- Authors: Arnold Unterauer, David Bucher, Matthias Knoll, Constantin Economides, Michael Lachner, Thomas Germain, Moritz Kessel, Smajo Hajdinovic, Jonas Stein,
- Abstract summary: We describe how the Turbine Balancing Problem can be solved with quantum computing.
Small yet relevant instances occur in industry, which makes the problem interesting for early quantum computing benchmarks.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum computing has the potential for disruptive change in many sectors of industry, especially in materials science and optimization. In this paper, we describe how the Turbine Balancing Problem can be solved with quantum computing, which is the NP-hard optimization problem of analytically balancing rotor blades in a single plane as found in turbine assembly. Small yet relevant instances occur in industry, which makes the problem interesting for early quantum computing benchmarks. We model it as a Quadratic Unconstrained Binary Optimization problem and compare the performance of a classical rule-based heuristic and D-Wave Systems' Quantum Annealer Advantage_system4.1. In this case study, we use real-world as well as synthetic datasets and observe that the quantum hardware significantly improves an actively used heuristic's solution for small-scale problem instances with bare disk imbalance in terms of solution quality. Motivated by this performance gain, we subsequently design a quantum-inspired classical heuristic based on simulated annealing that achieves extremely good results on all given problem instances, essentially solving the optimization problem sufficiently well for all considered datasets, according to industrial requirements.
Related papers
- Quantum optimization using a 127-qubit gate-model IBM quantum computer can outperform quantum annealers for nontrivial binary optimization problems [0.0]
We introduce a comprehensive quantum solver for binary optimization problems on gate-model quantum computers.
It consistently delivers correct solutions for problems with up to 127 qubits.
We benchmark this solver on IBM quantum computers for several classically nontrivial unconstrained binary optimization problems.
arXiv Detail & Related papers (2024-06-03T19:08:01Z) - Bayesian Parameterized Quantum Circuit Optimization (BPQCO): A task and hardware-dependent approach [49.89480853499917]
Variational quantum algorithms (VQA) have emerged as a promising quantum alternative for solving optimization and machine learning problems.
In this paper, we experimentally demonstrate the influence of the circuit design on the performance obtained for two classification problems.
We also study the degradation of the obtained circuits in the presence of noise when simulating real quantum computers.
arXiv Detail & Related papers (2024-04-17T11:00:12Z) - Assessing Quantum Computing Performance for Energy Optimization in a
Prosumer Community [1.072460284847973]
"Prosumer problem" is the problem of scheduling the household loads on the basis of the user needs, the electricity prices, and the availability of local renewable energy.
Quantum computers can offer a significant breakthrough in treating this problem thanks to the intrinsic parallel nature of quantum operations.
We report on an extensive set of experiments, on simulators and real quantum hardware, for different problem sizes.
arXiv Detail & Related papers (2023-11-17T15:48:51Z) - Exploring the topological sector optimization on quantum computers [5.458469081464264]
topological sector optimization (TSO) problem attracts particular interests in the quantum many-body physics community.
We demonstrate that the optimization difficulties of TSO problem are not restricted to the gaplessness, but are also due to the topological nature.
To solve TSO problems, we utilize quantum imaginary time evolution (QITE) with a possible realization on quantum computers.
arXiv Detail & Related papers (2023-10-06T14:51:07Z) - Dynamic Programming on a Quantum Annealer: Solving the RBC Model [1.0681288493631977]
We introduce a novel approach to solving dynamic programming problems, such as those in many economic models, on a quantum annealer.
We achieve an order-of-magnitude speed-up in solving the real business cycle model over benchmarks in the literature.
arXiv Detail & Related papers (2023-06-07T09:38:42Z) - Quantum Annealing for Single Image Super-Resolution [86.69338893753886]
We propose a quantum computing-based algorithm to solve the single image super-resolution (SISR) problem.
The proposed AQC-based algorithm is demonstrated to achieve improved speed-up over a classical analog while maintaining comparable SISR accuracy.
arXiv Detail & Related papers (2023-04-18T11:57:15Z) - Quantum Worst-Case to Average-Case Reductions for All Linear Problems [66.65497337069792]
We study the problem of designing worst-case to average-case reductions for quantum algorithms.
We provide an explicit and efficient transformation of quantum algorithms that are only correct on a small fraction of their inputs into ones that are correct on all inputs.
arXiv Detail & Related papers (2022-12-06T22:01:49Z) - Prog-QAOA: Framework for resource-efficient quantum optimization through classical programs [0.0]
Current quantum optimization algorithms require representing the original problem as a binary optimization problem, which is then converted into an equivalent Ising model suitable for the quantum device.
We propose to design classical programs for computing the objective function and certifying the constraints, and later compile them to quantum circuits.
This results in a new variant of the Quantum Approximate Optimization Algorithm (QAOA), which we name the Prog-QAOA.
arXiv Detail & Related papers (2022-09-07T18:01:01Z) - Adiabatic Quantum Computing for Multi Object Tracking [170.8716555363907]
Multi-Object Tracking (MOT) is most often approached in the tracking-by-detection paradigm, where object detections are associated through time.
As these optimization problems are often NP-hard, they can only be solved exactly for small instances on current hardware.
We show that our approach is competitive compared with state-of-the-art optimization-based approaches, even when using of-the-shelf integer programming solvers.
arXiv Detail & Related papers (2022-02-17T18:59:20Z) - Quantum circuit architecture search for variational quantum algorithms [88.71725630554758]
We propose a resource and runtime efficient scheme termed quantum architecture search (QAS)
QAS automatically seeks a near-optimal ansatz to balance benefits and side-effects brought by adding more noisy quantum gates.
We implement QAS on both the numerical simulator and real quantum hardware, via the IBM cloud, to accomplish data classification and quantum chemistry tasks.
arXiv Detail & Related papers (2020-10-20T12:06:27Z) - Space-efficient binary optimization for variational computing [68.8204255655161]
We show that it is possible to greatly reduce the number of qubits needed for the Traveling Salesman Problem.
We also propose encoding schemes which smoothly interpolate between the qubit-efficient and the circuit depth-efficient models.
arXiv Detail & Related papers (2020-09-15T18:17:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.