論文の概要: The Role of Learning Algorithms in Collective Action
- arxiv url: http://arxiv.org/abs/2405.06582v2
- Date: Mon, 3 Jun 2024 09:27:03 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-04 14:48:46.216120
- Title: The Role of Learning Algorithms in Collective Action
- Title(参考訳): 集団行動における学習アルゴリズムの役割
- Authors: Omri Ben-Dov, Jake Fawkes, Samira Samadi, Amartya Sanyal,
- Abstract要約: 本研究では,学習アルゴリズムの特性に大きく依存していることを示す。
このことは、機械学習における集団行動の影響を研究する際に、学習アルゴリズムを考慮に入れる必要性を強調している。
- 参考スコア(独自算出の注目度): 8.955918346078935
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Collective action in machine learning is the study of the control that a coordinated group can have over machine learning algorithms. While previous research has concentrated on assessing the impact of collectives against Bayes~(sub)-optimal classifiers, this perspective is limited in that it does not account for the choice of learning algorithm. Classifiers seldom behave like Bayes classifiers and are influenced by the choice of learning algorithms along with their inherent biases. In this work, we initiate the study of how the choice of the learning algorithm plays a role in the success of a collective in practical settings. Specifically, we focus on distributionally robust optimization (DRO), popular for improving a worst group error, and on the ubiquitous stochastic gradient descent (SGD), due to its inductive bias for "simpler" functions. Our empirical results, supported by a theoretical foundation, show that the effective size and success of the collective are highly dependent on properties of the learning algorithm. This highlights the necessity of taking the learning algorithm into account when studying the impact of collective action in machine learning.
- Abstract(参考訳): 機械学習における集合的行動(英: Collective action)とは、協調したグループが機械学習アルゴリズムよりも持つことができる制御の研究である。
これまでの研究は、ベイズ〜(サブ)最適分類器に対する集団の影響を評価することに集中してきたが、この視点は学習アルゴリズムの選択を考慮しないという点で限られていた。
分類器はベイズ分類器のように振る舞うことは滅多になく、学習アルゴリズムの選択とその固有のバイアスの影響を受けている。
本研究では,学習アルゴリズムの選択が,実践的な環境での集団の成功にどのように貢献するかを研究する。
具体的には、最悪のグループエラーを改善するために人気がある分散ロバスト最適化(DRO)と、"simpler"関数の帰納バイアスのため、ユビキタス確率勾配降下(SGD)に焦点を当てる。
理論的基礎によって支持された実験結果から,学習アルゴリズムの特性に有効サイズと成功度が強く依存していることが示唆された。
このことは、機械学習における集団行動の影響を研究する際に、学習アルゴリズムを考慮に入れる必要性を強調している。
関連論文リスト
- A Human-Centered Approach for Improving Supervised Learning [0.44378250612683995]
本稿では、パフォーマンス、時間、リソースの制約のバランスをとる方法を示す。
この研究のもう1つの目標は、人間中心のアプローチを用いて、エンサンブルスをより説明しやすく、理解しやすくすることである。
論文 参考訳(メタデータ) (2024-10-14T10:27:14Z) - Minimax Group Fairness in Strategic Classification [8.250258160056514]
戦略的分類において、エージェントは、学習者の分類器から肯定的な分類結果を受け取るために、その特徴をコストで操作する。
精度保証に加えて,グループフェアネス保証を有する学習目標について検討する。
我々は、複数のグループからなるエージェントの集団間のフェアネスを意識したスタックルバーグゲームを形式化し、各グループは独自のコスト関数を持つ。
論文 参考訳(メタデータ) (2024-10-03T14:22:55Z) - RLIF: Interactive Imitation Learning as Reinforcement Learning [56.997263135104504]
我々は,対話型模倣学習と類似するが,さらに実践的な仮定の下で,非政治強化学習によってパフォーマンスが向上できることを実証する。
提案手法は,ユーザ介入信号を用いた強化学習を報奨として利用する。
このことは、インタラクティブな模倣学習において介入する専門家がほぼ最適であるべきだという仮定を緩和し、アルゴリズムが潜在的に最適でない人間の専門家よりも改善される行動を学ぶことを可能にする。
論文 参考訳(メタデータ) (2023-11-21T21:05:21Z) - Algorithmic Collective Action in Machine Learning [35.91866986642348]
機械学習アルゴリズムをデプロイするデジタルプラットフォーム上でのアルゴリズム集合行動について研究する。
本稿では,企業の学習アルゴリズムと相互作用する集合の単純な理論的モデルを提案する。
我々は,フリーランサーのためのギグプラットフォームから数万の履歴書を含むスキル分類タスクについて,体系的な実験を行った。
論文 参考訳(メタデータ) (2023-02-08T18:55:49Z) - Implicit Offline Reinforcement Learning via Supervised Learning [83.8241505499762]
監視学習によるオフライン強化学習(RL)は、さまざまな専門レベルのポリシーによって収集されたデータセットからロボットスキルを学ぶための、シンプルで効果的な方法である。
我々は、暗黙的なモデルが返却情報を利用して、固定されたデータセットからロボットスキルを取得するために、明示的なアルゴリズムにマッチするか、あるいは性能を向上するかを示す。
論文 参考訳(メタデータ) (2022-10-21T21:59:42Z) - Improved Algorithms for Neural Active Learning [74.89097665112621]
非パラメトリックストリーミング設定のためのニューラルネットワーク(NN)ベースの能動学習アルゴリズムの理論的および経験的性能を改善する。
本研究では,SOTA(State-of-the-art (State-the-art)) 関連研究で使用されるものよりも,アクティブラーニングに適する人口減少を最小化することにより,2つの後悔の指標を導入する。
論文 参考訳(メタデータ) (2022-10-02T05:03:38Z) - Towards Diverse Evaluation of Class Incremental Learning: A Representation Learning Perspective [67.45111837188685]
クラスインクリメンタル学習(CIL)アルゴリズムは、インクリメンタルに到着したデータから新しいオブジェクトクラスを継続的に学習することを目的としている。
表現学習における様々な評価プロトコルを用いて,CILアルゴリズムによって訓練されたニューラルネットワークモデルを実験的に解析する。
論文 参考訳(メタデータ) (2022-06-16T11:44:11Z) - Stabilizing Q-learning with Linear Architectures for Provably Efficient
Learning [53.17258888552998]
本研究では,線形関数近似を用いた基本的な$Q$-learningプロトコルの探索変種を提案する。
このアルゴリズムの性能は,新しい近似誤差というより寛容な概念の下で,非常に優雅に低下することを示す。
論文 参考訳(メタデータ) (2022-06-01T23:26:51Z) - Probabilistic Active Learning for Active Class Selection [3.6471065658293043]
機械学習において、アクティブクラス選択(ACS)アルゴリズムは、クラスを積極的に選択し、そのクラスのインスタンスを提供することをオラクルに依頼することを目的としている。
本稿では,ACS問題を擬似インスタンスを導入して能動的学習タスクに変換するアルゴリズム(PAL-ACS)を提案する。
論文 参考訳(メタデータ) (2021-08-09T09:20:19Z) - Can Active Learning Preemptively Mitigate Fairness Issues? [66.84854430781097]
データセットバイアスは、機械学習における不公平な原因の1つです。
不確実性に基づくALで訓練されたモデルが保護クラスの決定において公平であるかどうかを検討する。
また,勾配反転(GRAD)やBALDなどのアルゴリズム的公正性手法の相互作用についても検討する。
論文 参考訳(メタデータ) (2021-04-14T14:20:22Z) - Coping with Mistreatment in Fair Algorithms [1.2183405753834557]
教師付き学習環境におけるアルゴリズムの公平性を検討し,等価機会指標の分類器最適化の効果を検討する。
このバイアスを軽減するための概念的にシンプルな方法を提案する。
提案手法を厳密に解析し,その効果を示す実世界データセット上で評価する。
論文 参考訳(メタデータ) (2021-02-22T03:26:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。