Sensing force gradients with cavity optomechanics while evading backaction
- URL: http://arxiv.org/abs/2405.06589v1
- Date: Fri, 10 May 2024 16:45:15 GMT
- Title: Sensing force gradients with cavity optomechanics while evading backaction
- Authors: Elisabet K. Arvidsson, Ermes Scarano, August K. Roos, Sofia Qvarfort, David B. Haviland,
- Abstract summary: We study force gradient sensing by a coherently driven mechanical resonator with phase-sensitive detection of motion.
The response of the cavity to two coherent pumps is solved by numerical integration of the classical equations of motion.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We study force gradient sensing by a coherently driven mechanical resonator with phase-sensitive detection of motion via the two-tone backaction evading measurement of cavity optomechanics. The response of the cavity to two coherent pumps is solved by numerical integration of the classical equations of motion, showing an extended region of monotonic response. We use Floquet theory to model the fluctuations, which rise only slightly above that of the usual backaction evading measurement in the presence of the mechanical drive. Our analysis indicates that this sensing technique is advantageous for applications such as Atomic Force Microscopy.
Related papers
- Dynamics and Spectral Response of linear-quadratic optomechanical interaction: Effects of pure dephasing [55.2480439325792]
The decoherence dynamics and spectral response of an optomechanical system is addressed.
The decoherence considered arises from pure dephasing, described by the Milburn evolution of the Schr"odinger equation.
Results and discussion comparing the inclusions of the linear, quadratic, and linear-quadratic couplings are given.
arXiv Detail & Related papers (2025-01-24T17:13:09Z) - A Roadmap for Simulating Chemical Dynamics on a Parametrically Driven Bosonic Quantum Device [32.65699367892846]
We investigate the feasibility of simulating reaction dynamics using a bosonic superconducting Kerr-cat device.
This approach provides control over parameters defining the double-well free energy profile, as well as external factors like temperature and the coupling strength between the reaction coordinate and the thermal bath of non-reactive degrees of freedom.
arXiv Detail & Related papers (2024-09-19T22:43:08Z) - Nonlinear dynamical Casimir effect and Unruh entanglement in waveguide QED with parametrically modulated coupling [83.88591755871734]
We study theoretically an array of two-level qubits moving relative to a one-dimensional waveguide.
When the frequency of this motion approaches twice the qubit resonance frequency, it induces parametric generation of photons and excitation of the qubits.
We develop a comprehensive general theoretical framework that incorporates both perturbative diagrammatic techniques and a rigorous master-equation approach.
arXiv Detail & Related papers (2024-08-30T15:54:33Z) - Selective cooling and squeezing in a lossy optomechanical closed loop embodying an exceptional surface [0.0]
We investigate a lossy optomechanical system consisting of one optical and two degenerate mechanical resonators.
In examining a specific quantum attribute, we delve into the control of quadrature variances within the resonator selected through the plaquette phase.
We provide physical insights into how non-Hermiticity plays a crucial role in enhancing cooling and squeezing in proximity to exceptional points.
arXiv Detail & Related papers (2023-07-19T09:19:53Z) - Unconditional Wigner-negative mechanical entanglement with
linear-and-quadratic optomechanical interactions [62.997667081978825]
We propose two schemes for generating Wigner-negative entangled states unconditionally in mechanical resonators.
We show analytically that both schemes stabilize a Wigner-negative entangled state that combines the entanglement of a two-mode squeezed vacuum with a cubic nonlinearity.
We then perform extensive numerical simulations to test the robustness of Wigner-negative entanglement attained by approximate CPE states stabilized in the presence of thermal decoherence.
arXiv Detail & Related papers (2023-02-07T19:00:08Z) - Dynamical Backaction Evading Magnomechanics [0.0]
We show the implementation of a cavity magnomechanical measurement that fully evades dynamical backaction effects.
Through careful engineering, the magnomechanical scattering rate into the hybrid magnon-photon modes can be precisely matched.
Backaction evasion is confirmed via the measurement of a drive-power-independent mechanical linewidth.
arXiv Detail & Related papers (2022-11-24T19:02:25Z) - Kerr enhanced backaction cooling in magnetomechanics [0.0]
Optomechanics is a prime example of light matter interaction, where photons directly couple to phonons, allowing to precisely control and measure the state of a mechanical object.
This makes it a very appealing platform for testing fundamental physics or for sensing applications.
arXiv Detail & Related papers (2022-02-26T21:16:46Z) - Dispersive readout of molecular spin qudits [68.8204255655161]
We study the physics of a magnetic molecule described by a "giant" spin with multiple $d > 2$ spin states.
We derive an expression for the output modes in the dispersive regime of operation.
We find that the measurement of the cavity transmission allows to uniquely determine the spin state of the qudits.
arXiv Detail & Related papers (2021-09-29T18:00:09Z) - Cavity-Altered Thermal Isomerization Rates and Dynamical Resonant
Localization in Vibro-Polaritonic Chemistry [0.0]
Reaction rates for molecules embedded in microfluidic optical cavities are altered when compared to rates observed under "ordinary" reaction conditions.
We study how strong coupling of an optical cavity mode to molecular vibrations affect the reactivity and how resonance behavior emerges.
arXiv Detail & Related papers (2021-09-28T09:06:08Z) - Proposal for constraining non-Newtonian gravity at nm range via
criticality enhanced measurement of resonance frequency shift [7.973708885357668]
We set a constraint on the non-Newtonian gravity which improves the previous bounds by about a factor of 7 at 1 nanometer range.
Our results indicate that our method could be put into consideration in relevant experimental searches.
arXiv Detail & Related papers (2021-07-25T13:54:05Z) - Cat states in a driven superfluid: role of signal shape and switching
protocol [62.997667081978825]
We investigate the behavior of a one-dimensional Bose-Hubbard model whose kinetic energy is made to oscillate with zero time-average.
We analyze the robustness of this unconventional ground state against variations of a number of system parameters.
arXiv Detail & Related papers (2020-05-11T15:15:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.