A unified cross-attention model for predicting antigen binding specificity to both HLA and TCR molecules
- URL: http://arxiv.org/abs/2405.06653v2
- Date: Fri, 10 Jan 2025 15:02:43 GMT
- Title: A unified cross-attention model for predicting antigen binding specificity to both HLA and TCR molecules
- Authors: Chenpeng Yu, Xing Fang, Hui Liu,
- Abstract summary: The immune checkpoint inhibitors have demonstrated promising clinical efficacy across various tumor types.
The bindings between tumor antigens and HLA-I/TCR molecules determine the antigen presentation and T-cell activation.
We propose UnifyImmun, a unified cross-attention transformer model designed to simultaneously predict the bindings of peptides to both receptors.
- Score: 4.501817929699959
- License:
- Abstract: The immune checkpoint inhibitors have demonstrated promising clinical efficacy across various tumor types, yet the percentage of patients who benefit from them remains low. The bindings between tumor antigens and HLA-I/TCR molecules determine the antigen presentation and T-cell activation, thereby playing an important role in the immunotherapy response. In this paper, we propose UnifyImmun, a unified cross-attention transformer model designed to simultaneously predict the bindings of peptides to both receptors, providing more comprehensive evaluation of antigen immunogenicity. We devise a two-phase strategy using virtual adversarial training that enables these two tasks to reinforce each other mutually, by compelling the encoders to extract more expressive features. Our method demonstrates superior performance in predicting both pHLA and pTCR binding on multiple independent and external test sets. Notably, on a large-scale COVID-19 pTCR binding test set without any seen peptide in training set, our method outperforms the current state-of-the-art methods by more than 10\%. The predicted binding scores significantly correlate with the immunotherapy response and clinical outcomes on two clinical cohorts. Furthermore, the cross-attention scores and integrated gradients reveal the amino-acid sites critical for peptide binding to receptors. In essence, our approach marks a significant step toward comprehensive evaluation of antigen immunogenicity.
Related papers
- Relation-Aware Equivariant Graph Networks for Epitope-Unknown Antibody Design and Specificity Optimization [61.06622479173572]
We propose a novel Relation-Aware Design (RAAD) framework, which models antigen-antibody interactions for co-designing sequences and structures of antigen-specific CDRs.
Furthermore, we propose a new evaluation metric to better measure antibody specificity and develop a contrasting specificity-enhancing constraint to optimize the specificity of antibodies.
arXiv Detail & Related papers (2024-12-14T03:00:44Z) - DapPep: Domain Adaptive Peptide-agnostic Learning for Universal T-cell Receptor-antigen Binding Affinity Prediction [38.358558338444624]
We introduce a domain-adaptive peptide-agnostic learning framework DapPep for universal TCR-antigen binding affinity prediction.
DapPep consistently outperforms existing tools, showcasing robust generalization capability.
It proves effective in challenging clinical tasks such as sorting reactive T cells in tumor neoantigen therapy and identifying key positions in 3D structures.
arXiv Detail & Related papers (2024-11-26T18:06:42Z) - tcrLM: a lightweight protein language model for predicting T cell receptor and epitope binding specificity [4.120928123714289]
Anti-cancer immune response relies on bindings between T-cell receptors (TCRs) and antigens, which elicits adaptive immunity to eliminate tumor cells.
In this study, we introduce a lightweight masked language model, termed tcrLM, to address this challenge.
We construct the largest TCR CDR3 sequence set with more than 100 million distinct sequences, and pretrain tcrLM on these sequences.
The results demonstrate that tcrLM not only surpasses existing TCR-antigen binding prediction methods, but also outperforms other mainstream protein language models.
arXiv Detail & Related papers (2024-06-24T08:36:40Z) - Evaluating Zero-Shot Scoring for In Vitro Antibody Binding Prediction
with Experimental Validation [0.08968838300743379]
We compare 8 common scoring paradigms based on open-source models to classify antibody designs as binders or non-binders.
Results show that existing methods struggle to detect binders, and performance is highly variable across antigens.
arXiv Detail & Related papers (2023-12-07T23:34:03Z) - AIRIVA: A Deep Generative Model of Adaptive Immune Repertoires [6.918664738267051]
We present an Adaptive Immune Repertoire-Invariant Variational Autoencoder (AIRIVA) that learns a low-dimensional, interpretable, and compositional representation of TCR repertoires to disentangle systematic effects in repertoires.
arXiv Detail & Related papers (2023-04-26T14:40:35Z) - Dense Feature Memory Augmented Transformers for COVID-19 Vaccination
Search Classification [60.49594822215981]
This paper presents a classification model for detecting COVID-19 vaccination related search queries.
We propose a novel approach of considering dense features as memory tokens that the model can attend to.
We show that this new modeling approach enables a significant improvement to the Vaccine Search Insights (VSI) task.
arXiv Detail & Related papers (2022-12-16T13:57:41Z) - Improved Drug-target Interaction Prediction with Intermolecular Graph
Transformer [98.8319016075089]
We propose a novel approach to model intermolecular information with a three-way Transformer-based architecture.
Intermolecular Graph Transformer (IGT) outperforms state-of-the-art approaches by 9.1% and 20.5% over the second best for binding activity and binding pose prediction respectively.
IGT exhibits promising drug screening ability against SARS-CoV-2 by identifying 83.1% active drugs that have been validated by wet-lab experiments with near-native predicted binding poses.
arXiv Detail & Related papers (2021-10-14T13:28:02Z) - A k-mer Based Approach for SARS-CoV-2 Variant Identification [55.78588835407174]
We show that preserving the order of the amino acids helps the underlying classifiers to achieve better performance.
We also show the importance of the different amino acids which play a key role in identifying variants and how they coincide with those reported by the USA's Centers for Disease Control and Prevention (CDC)
arXiv Detail & Related papers (2021-08-07T15:08:15Z) - Confidence-guided Lesion Mask-based Simultaneous Synthesis of Anatomic
and Molecular MR Images in Patients with Post-treatment Malignant Gliomas [65.64363834322333]
Confidence Guided SAMR (CG-SAMR) synthesizes data from lesion information to multi-modal anatomic sequences.
module guides the synthesis based on confidence measure about the intermediate results.
experiments on real clinical data demonstrate that the proposed model can perform better than the state-of-theart synthesis methods.
arXiv Detail & Related papers (2020-08-06T20:20:22Z) - PaccMann$^{RL}$ on SARS-CoV-2: Designing antiviral candidates with
conditional generative models [2.0750380105212116]
With the fast development of COVID-19 into a global pandemic, scientists around the globe are desperately searching for effective antiviral therapeutic agents.
We propose a deep learning framework for conditional de novo design of antiviral candidate drugs tailored against given protein targets.
arXiv Detail & Related papers (2020-05-27T11:30:15Z) - Accelerating Antimicrobial Discovery with Controllable Deep Generative
Models and Molecular Dynamics [109.70543391923344]
CLaSS (Controlled Latent attribute Space Sampling) is an efficient computational method for attribute-controlled generation of molecules.
We screen the generated molecules for additional key attributes by using deep learning classifiers in conjunction with novel features derived from atomistic simulations.
The proposed approach is demonstrated for designing non-toxic antimicrobial peptides (AMPs) with strong broad-spectrum potency.
arXiv Detail & Related papers (2020-05-22T15:57:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.