ImmunoDiff: A Diffusion Model for Immunotherapy Response Prediction in Lung Cancer
- URL: http://arxiv.org/abs/2505.23675v1
- Date: Thu, 29 May 2025 17:19:40 GMT
- Title: ImmunoDiff: A Diffusion Model for Immunotherapy Response Prediction in Lung Cancer
- Authors: Moinak Bhattacharya, Judy Huang, Amna F. Sher, Gagandeep Singh, Chao Chen, Prateek Prasanna,
- Abstract summary: Accurately predicting immunotherapy response in Non-Small Cell Lung Cancer (NSCLC) remains a critical unmet need.<n>Existing radiomics and deep learning-based predictive models rely primarily on pre-treatment imaging to predict categorical response outcomes.<n>This study introduces ImmunoDiff, an anatomy-aware diffusion model designed to synthesize post-treatment CT scans from baseline imaging while incorporating clinically relevant constraints.
- Score: 10.797150801746957
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Accurately predicting immunotherapy response in Non-Small Cell Lung Cancer (NSCLC) remains a critical unmet need. Existing radiomics and deep learning-based predictive models rely primarily on pre-treatment imaging to predict categorical response outcomes, limiting their ability to capture the complex morphological and textural transformations induced by immunotherapy. This study introduces ImmunoDiff, an anatomy-aware diffusion model designed to synthesize post-treatment CT scans from baseline imaging while incorporating clinically relevant constraints. The proposed framework integrates anatomical priors, specifically lobar and vascular structures, to enhance fidelity in CT synthesis. Additionally, we introduce a novel cbi-Adapter, a conditioning module that ensures pairwise-consistent multimodal integration of imaging and clinical data embeddings, to refine the generative process. Additionally, a clinical variable conditioning mechanism is introduced, leveraging demographic data, blood-based biomarkers, and PD-L1 expression to refine the generative process. Evaluations on an in-house NSCLC cohort treated with immune checkpoint inhibitors demonstrate a 21.24% improvement in balanced accuracy for response prediction and a 0.03 increase in c-index for survival prediction. Code will be released soon.
Related papers
- A Metabolic-Imaging Integrated Model for Prognostic Prediction in Colorectal Liver Metastases [5.6492616107251274]
This study developed and validated a robust machine learning model for predicting postoperative recurrence risk.<n>We restricted input variables to preoperative baseline clinical parameters and radiomic features from contrast-enhanced CT imaging.<n>The 3-month recurrence prediction model demonstrated optimal performance with an AUC of 0.723 in cross-validation.
arXiv Detail & Related papers (2025-07-26T01:29:38Z) - Predicting Neoadjuvant Chemotherapy Response in Triple-Negative Breast Cancer Using Pre-Treatment Histopathologic Images [2.23127246021293]
Triple-negative breast cancer (TNBC) remains a major clinical challenge due to its aggressive behavior and lack of targeted therapies.<n>We present an attention-based multiple instance learning framework designed to predict pathologic complete response (pCR) directly from pre-treatment hematoxylin and eosin (H&E)-stained biopsy slides.
arXiv Detail & Related papers (2025-05-20T02:06:34Z) - Prediction of Lung Metastasis from Hepatocellular Carcinoma using the SEER Database [0.9055332067000195]
Hepatocellular carcinoma (HCC) is a leading cause of cancer-related mortality.<n> predictive models for lung metastasis inHCC remain limited in scope and clinical applicability.<n>We develop and validate an end-to-end machine learning pipeline using data from the Surveillance, Epidemiology, and End Results (SEER) database.
arXiv Detail & Related papers (2025-01-20T20:06:31Z) - Patient-specific prediction of glioblastoma growth via reduced order modeling and neural networks [0.0]
We present a proof-of-concept for a mathematical model of GBL growth, enabling real-time prediction and patient-specific parameter identification.<n>A neural network surrogate learns the inverse mapping from tumor evolution to model parameters, achieving significant computational speed-up.
arXiv Detail & Related papers (2024-12-04T18:46:05Z) - TopoTxR: A topology-guided deep convolutional network for breast parenchyma learning on DCE-MRIs [49.69047720285225]
We propose a novel topological approach that explicitly extracts multi-scale topological structures to better approximate breast parenchymal structures.
We empirically validate emphTopoTxR using the VICTRE phantom breast dataset.
Our qualitative and quantitative analyses suggest differential topological behavior of breast tissue in treatment-na"ive imaging.
arXiv Detail & Related papers (2024-11-05T19:35:10Z) - Histopathology Based AI Model Predicts Anti-Angiogenic Therapy Response in Renal Cancer Clinical Trial [0.6087644423424302]
We present a novel deep learning (DL) approach to predict the Angioscore from ubiquitous histopathology slides.
Our model produces a visual vascular network which is the basis of the model's prediction.
Our approach offers insights into angiogenesis biology and AA treatment response.
arXiv Detail & Related papers (2024-05-28T16:21:20Z) - Using Multiparametric MRI with Optimized Synthetic Correlated Diffusion Imaging to Enhance Breast Cancer Pathologic Complete Response Prediction [71.91773485443125]
Neoadjuvant chemotherapy has recently gained popularity as a promising treatment strategy for breast cancer.
The current process to recommend neoadjuvant chemotherapy relies on the subjective evaluation of medical experts.
This research investigates the application of optimized CDI$s$ to enhance breast cancer pathologic complete response prediction.
arXiv Detail & Related papers (2024-05-13T15:40:56Z) - Enhancing Clinical Support for Breast Cancer with Deep Learning Models
using Synthetic Correlated Diffusion Imaging [66.63200823918429]
We investigate enhancing clinical support for breast cancer with deep learning models.
We leverage a volumetric convolutional neural network to learn deep radiomic features from a pre-treatment cohort.
We find that the proposed approach can achieve better performance for both grade and post-treatment response prediction.
arXiv Detail & Related papers (2022-11-10T03:02:12Z) - Exploiting segmentation labels and representation learning to forecast
therapy response of PDAC patients [60.78505216352878]
We propose a hybrid deep neural network pipeline to predict tumour response to initial chemotherapy.
We leverage a combination of representation transfer from segmentation to classification, as well as localisation and representation learning.
Our approach yields a remarkably data-efficient method able to predict treatment response with a ROC-AUC of 63.7% using only 477 datasets in total.
arXiv Detail & Related papers (2022-11-08T11:50:31Z) - Generating counterfactual explanations of tumor spatial proteomes to
discover effective strategies for enhancing immune infiltration [44.99833362998488]
The tumor microenvironment (TME) significantly impacts cancer prognosis due to its immune composition.
Here, we formulate T-cell infiltration prediction as a self-supervised machine learning problem.
We apply our framework to melanoma, colorectal cancer liver metastases, and breast tumor data, discovering perturbations predicted to support T-cell infiltration.
arXiv Detail & Related papers (2022-11-08T05:46:02Z) - PD-DWI: Predicting response to neoadjuvant chemotherapy in invasive
breast cancer with Physiologically-Decomposed Diffusion-Weighted MRI
machine-learning model [0.0]
We introduce PD-DWI, a physiologically decomposed DWI machine-learning model to predict pCR from DWI and clinical data.
Our model substantially improves the area under the curve (AUC), compared to the current best result on the leaderboard.
arXiv Detail & Related papers (2022-06-12T08:59:49Z) - Lung Cancer Lesion Detection in Histopathology Images Using Graph-Based
Sparse PCA Network [93.22587316229954]
We propose a graph-based sparse principal component analysis (GS-PCA) network, for automated detection of cancerous lesions on histological lung slides stained by hematoxylin and eosin (H&E)
We evaluate the performance of the proposed algorithm on H&E slides obtained from an SVM K-rasG12D lung cancer mouse model using precision/recall rates, F-score, Tanimoto coefficient, and area under the curve (AUC) of the receiver operator characteristic (ROC)
arXiv Detail & Related papers (2021-10-27T19:28:36Z) - MIA-Prognosis: A Deep Learning Framework to Predict Therapy Response [58.0291320452122]
This paper aims at a unified deep learning approach to predict patient prognosis and therapy response.
We formalize the prognosis modeling as a multi-modal asynchronous time series classification task.
Our predictive model could further stratify low-risk and high-risk patients in terms of long-term survival.
arXiv Detail & Related papers (2020-10-08T15:30:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.