RNA Secondary Structure Prediction Using Transformer-Based Deep Learning Models
- URL: http://arxiv.org/abs/2405.06655v1
- Date: Sun, 14 Apr 2024 08:36:14 GMT
- Title: RNA Secondary Structure Prediction Using Transformer-Based Deep Learning Models
- Authors: Yanlin Zhou, Tong Zhan, Yichao Wu, Bo Song, Chenxi Shi,
- Abstract summary: The Human Genome Project has led to an exponential increase in data related to the sequence, structure, and function of biomolecules.
This paper discusses the fundamental concepts of RNA, RNA secondary structure, and its prediction.
The application of machine learning technologies in predicting the structure of biological macromolecules is explored.
- Score: 13.781096813376145
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The Human Genome Project has led to an exponential increase in data related to the sequence, structure, and function of biomolecules. Bioinformatics is an interdisciplinary research field that primarily uses computational methods to analyze large amounts of biological macromolecule data. Its goal is to discover hidden biological patterns and related information. Furthermore, analysing additional relevant information can enhance the study of biological operating mechanisms. This paper discusses the fundamental concepts of RNA, RNA secondary structure, and its prediction.Subsequently, the application of machine learning technologies in predicting the structure of biological macromolecules is explored. This chapter describes the relevant knowledge of algorithms and computational complexity and presents a RNA tertiary structure prediction algorithm based on ResNet. To address the issue of the current scoring function's unsuitability for long RNA, a scoring model based on ResNet is proposed, and a structure prediction algorithm is designed. The chapter concludes by presenting some open and interesting challenges in the field of RNA tertiary structure prediction.
Related papers
- Predicting Distance matrix with large language models [1.8855270809505869]
RNA structure prediction remains a significant challenge due to data limitations.
Traditional methods such as nuclear magnetic resonance spectroscopy, Xray crystallography, and electron microscopy are expensive and time consuming.
Distance maps provide a simplified representation of spatial constraints between nucleotides, capturing essential relationships without requiring a full 3D model.
arXiv Detail & Related papers (2024-09-24T10:28:55Z) - BEACON: Benchmark for Comprehensive RNA Tasks and Language Models [60.02663015002029]
We introduce the first comprehensive RNA benchmark BEACON (textbfBEnchmtextbfArk for textbfCOmprehensive RtextbfNA Task and Language Models).
First, BEACON comprises 13 distinct tasks derived from extensive previous work covering structural analysis, functional studies, and engineering applications.
Second, we examine a range of models, including traditional approaches like CNNs, as well as advanced RNA foundation models based on language models, offering valuable insights into the task-specific performances of these models.
Third, we investigate the vital RNA language model components
arXiv Detail & Related papers (2024-06-14T19:39:19Z) - Progress and Opportunities of Foundation Models in Bioinformatics [77.74411726471439]
Foundations models (FMs) have ushered in a new era in computational biology, especially in the realm of deep learning.
Central to our focus is the application of FMs to specific biological problems, aiming to guide the research community in choosing appropriate FMs for their research needs.
Review analyses challenges and limitations faced by FMs in biology, such as data noise, model explainability, and potential biases.
arXiv Detail & Related papers (2024-02-06T02:29:17Z) - Knowledge from Large-Scale Protein Contact Prediction Models Can Be
Transferred to the Data-Scarce RNA Contact Prediction Task [40.051834115537474]
We find that a protein-coevolution Transformer-based deep neural network can be transferred to the RNA contact prediction task.
Experiments confirm that RNA contact prediction through transfer learning is greatly improved.
Our findings indicate that the learned structural patterns of proteins can be transferred to RNAs, opening up potential new avenues for research.
arXiv Detail & Related papers (2023-02-13T06:00:56Z) - RDesign: Hierarchical Data-efficient Representation Learning for
Tertiary Structure-based RNA Design [65.41144149958208]
This study aims to systematically construct a data-driven RNA design pipeline.
We crafted a benchmark dataset and designed a comprehensive structural modeling approach to represent the complex RNA tertiary structure.
We incorporated extracted secondary structures with base pairs as prior knowledge to facilitate the RNA design process.
arXiv Detail & Related papers (2023-01-25T17:19:49Z) - Improving RNA Secondary Structure Design using Deep Reinforcement
Learning [69.63971634605797]
We propose a new benchmark of applying reinforcement learning to RNA sequence design, in which the objective function is defined to be the free energy in the sequence's secondary structure.
We show results of the ablation analysis that we do for these algorithms, as well as graphs indicating the algorithm's performance across batches.
arXiv Detail & Related papers (2021-11-05T02:54:06Z) - On the Exploitation of Neuroevolutionary Information: Analyzing the Past
for a More Efficient Future [60.99717891994599]
We propose an approach that extracts information from neuroevolutionary runs, and use it to build a metamodel.
We inspect the best structures found during neuroevolutionary searches of generative adversarial networks with varying characteristics.
arXiv Detail & Related papers (2021-05-26T20:55:29Z) - Neural representation and generation for RNA secondary structures [14.583976833366384]
Our work is concerned with the generation and targeted design of RNA, a type of genetic macromolecule.
The design of large scale and complex biological structures spurs dedicated graph-based deep generative modeling techniques.
We propose a flexible framework to jointly embed and generate different RNA structural modalities.
arXiv Detail & Related papers (2021-02-01T15:49:25Z) - Computational prediction of RNA tertiary structures using machine
learning methods [14.35527588241679]
Computational prediction approaches can help to understand RNA structures and their stabilizing factors.
Although their usage in protein-related fields has a long history, the use of machine learning methods in predicting RNA tertiary structures is new and rare.
arXiv Detail & Related papers (2020-09-03T04:01:43Z) - Review of Machine-Learning Methods for RNA Secondary Structure
Prediction [21.3539253580504]
We provide a comprehensive overview of RNA secondary structure prediction methods based on machine-learning technologies.
The current pending issues in the field of RNA secondary structure prediction and future trends are also discussed.
arXiv Detail & Related papers (2020-09-01T03:17:15Z) - Transfer Learning for Protein Structure Classification at Low Resolution [124.5573289131546]
We show that it is possible to make accurate ($geq$80%) predictions of protein class and architecture from structures determined at low ($leq$3A) resolution.
We provide proof of concept for high-speed, low-cost protein structure classification at low resolution, and a basis for extension to prediction of function.
arXiv Detail & Related papers (2020-08-11T15:01:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.