論文の概要: AI and Machine Learning for Next Generation Science Assessments
- arxiv url: http://arxiv.org/abs/2405.06660v1
- Date: Tue, 23 Apr 2024 01:39:20 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-27 03:27:39.880054
- Title: AI and Machine Learning for Next Generation Science Assessments
- Title(参考訳): 次世代科学評価のためのAIと機械学習
- Authors: Xiaoming Zhai,
- Abstract要約: この章は、科学評価における人工知能(AI)と機械学習(ML)の変革的な役割に焦点を当てている。
論文は、概念学習からナレッジ・イン・ユースへのシフトを求めるK-12サイエンス教育フレームワークの議論から始まる。
本論文は,理科教育におけるMLベースアセスメントの現状の見直し,MLベース自動アセスメントにおける精度評価フレームワークの導入,今後の方向性と課題の議論という,3つの大きな目標を達成している。
- 参考スコア(独自算出の注目度): 0.7416846035207727
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This chapter focuses on the transformative role of Artificial Intelligence (AI) and Machine Learning (ML) in science assessments. The paper begins with a discussion of the Framework for K-12 Science Education, which calls for a shift from conceptual learning to knowledge-in-use. This shift necessitates the development of new types of assessments that align with the Framework's three dimensions: science and engineering practices, disciplinary core ideas, and crosscutting concepts. The paper further highlights the limitations of traditional assessment methods like multiple-choice questions, which often fail to capture the complexities of scientific thinking and three-dimensional learning in science. It emphasizes the need for performance-based assessments that require students to engage in scientific practices like modeling, explanation, and argumentation. The paper achieves three major goals: reviewing the current state of ML-based assessments in science education, introducing a framework for scoring accuracy in ML-based automatic assessments, and discussing future directions and challenges. It delves into the evolution of ML-based automatic scoring systems, discussing various types of ML, like supervised, unsupervised, and semi-supervised learning. These systems can provide timely and objective feedback, thus alleviating the burden on teachers. The paper concludes by exploring pre-trained models like BERT and finetuned ChatGPT, which have shown promise in assessing students' written responses effectively.
- Abstract(参考訳): この章は、科学評価における人工知能(AI)と機械学習(ML)の変革的な役割に焦点を当てている。
論文は、概念学習からナレッジ・イン・ユースへのシフトを求めるK-12サイエンス教育フレームワークの議論から始まる。
このシフトは、科学と工学の実践、学際的な中核的な考え方、そして横断的な概念という、フレームワークの3つの側面に沿った新しいタイプのアセスメントの開発を必要とする。
本稿は、科学的思考の複雑さと科学における3次元学習の複雑さを捉えるのに失敗する、複数選択質問のような従来の評価手法の限界をさらに強調する。
これは、学生がモデリング、説明、議論といった科学的な実践に従事しなければならないパフォーマンスベースの評価の必要性を強調している。
本論文は,理科教育におけるMLベースアセスメントの現状の見直し,MLベース自動アセスメントにおける精度評価フレームワークの導入,今後の方向性と課題の議論という,3つの大きな目標を達成している。
MLベースの自動スコアリングシステムの進化を掘り下げ、教師なし、教師なし、半教師なしの学習など、さまざまなタイプのMLについて議論する。
これらのシステムは、タイムリーで客観的なフィードバックを提供することができ、教師の負担を軽減することができる。
本論文は, BERTや微調整ChatGPTなどの事前学習モデルについて検討し, 学生の回答を効果的に評価する可能性を示唆した。
関連論文リスト
- Good Idea or Not, Representation of LLM Could Tell [86.36317971482755]
我々は、大規模言語モデルの知識を活用し、科学的アイデアのメリットを評価することを目的としたアイデアアセスメントに焦点をあてる。
我々は、このタスクに対する様々なアプローチのパフォーマンスを訓練し評価するために、細心の注意を払って設計された、フルテキストを持つ約4万の原稿からベンチマークデータセットをリリースする。
その結果, 大規模言語モデルの表現は, 生成出力よりもアイデアの価値を定量化する可能性が高いことが示唆された。
論文 参考訳(メタデータ) (2024-09-07T02:07:22Z) - Recent Advances on Machine Learning for Computational Fluid Dynamics: A Survey [51.87875066383221]
本稿では、基本概念、従来の手法、ベンチマークデータセットを紹介し、CFDを改善する上で機械学習が果たす様々な役割について検討する。
我々は,空気力学,燃焼,大気・海洋科学,生物流体,プラズマ,記号回帰,秩序の低減など,CFDにおけるMLの現実的な応用を強調した。
シミュレーションの精度を向上し、計算時間を短縮し、流体力学のより複雑な解析を可能にすることにより、MLはCFD研究を大きく変革する可能性があるという結論を導いた。
論文 参考訳(メタデータ) (2024-08-22T07:33:11Z) - RelevAI-Reviewer: A Benchmark on AI Reviewers for Survey Paper Relevance [0.8089605035945486]
本稿では,調査論文レビューの課題を分類問題として概念化するシステムであるRelevAI-Reviewerを提案する。
25,164のインスタンスからなる新しいデータセットを導入する。各インスタンスには1つのプロンプトと4つの候補論文があり、それぞれがプロンプトに関連している。
我々は,各論文の関連性を判断し,最も関連性の高い論文を識別できる機械学習(ML)モデルを開発した。
論文 参考訳(メタデータ) (2024-06-13T06:42:32Z) - LOVA3: Learning to Visual Question Answering, Asking and Assessment [61.51687164769517]
質問への回答、質問、評価は、世界を理解し、知識を得るのに不可欠な3つの人間の特性である。
現在のMLLM(Multimodal Large Language Models)は主に質問応答に焦点を当てており、質問や評価スキルの可能性を無視することが多い。
LOVA3は、"Learning tO Visual Question Answering, Asking and Assessment"と名付けられた革新的なフレームワークである。
論文 参考訳(メタデータ) (2024-05-23T18:21:59Z) - A Chain-of-Thought Prompting Approach with LLMs for Evaluating Students' Formative Assessment Responses in Science [3.124884279860061]
本研究では,中学生の地球科学における自動評価にGPT-4を活用することに焦点を当てた。
提案手法のプロスとコンスのシステマティック解析により,自動階調向上のためのヒト・イン・ザ・ループ技術の可能性に光を当てる。
論文 参考訳(メタデータ) (2024-03-21T17:09:08Z) - MachineLearnAthon: An Action-Oriented Machine Learning Didactic Concept [34.6229719907685]
本稿では、異なる分野の学生に包括的にデザインされた革新的教科概念であるMachineLearnAthonフォーマットを紹介する。
この概念の核心はMLの課題であり、現実の問題を解決するために産業用データセットを利用している。
これらはMLパイプライン全体をカバーするもので、データ準備からデプロイメント、評価に至るまで、データのリテラシーと実践的なスキルを促進する。
論文 参考訳(メタデータ) (2024-01-29T16:50:32Z) - Automatic assessment of text-based responses in post-secondary
education: A systematic review [0.0]
教育におけるテキストベースの反応の迅速な評価とフィードバックの自動化には大きな可能性がある。
近年,テキストによる自動評価システムがどのように開発され,教育に応用されているかを理解するために,三つの研究課題が検討されている。
この体系的なレビューは、テキストベースのアセスメントシステムの最近の教育応用の概要を提供する。
論文 参考訳(メタデータ) (2023-08-30T17:16:45Z) - Practical and Ethical Challenges of Large Language Models in Education:
A Systematic Scoping Review [5.329514340780243]
大規模言語モデル(LLM)は、テキストコンテンツの生成と分析の面倒なプロセスを自動化する可能性がある。
これらの革新の実践性と倫理性には懸念がある。
我々は2017年以降に発行された118件の査読論文の体系的スコーピングレビューを行い、研究の現状を明らかにした。
論文 参考訳(メタデータ) (2023-03-17T18:14:46Z) - Investigating Fairness Disparities in Peer Review: A Language Model
Enhanced Approach [77.61131357420201]
我々は、大規模言語モデル(LM)の助けを借りて、ピアレビューにおける公平性格差の徹底した厳密な研究を行う。
我々は、2017年から現在までのICLR(International Conference on Learning Representations)カンファレンスで、包括的なリレーショナルデータベースを収集、組み立て、維持しています。
我々は、著作者性別、地理、著作者、機関的名声など、興味のある複数の保護属性に対する公平性の違いを仮定し、研究する。
論文 参考訳(メタデータ) (2022-11-07T16:19:42Z) - Don't Copy the Teacher: Data and Model Challenges in Embodied Dialogue [92.01165203498299]
後続の身体的対話命令は、自然言語交換から複雑なタスクのシーケンスを完了させるエージェントを必要とする。
本稿では,模倣学習(IL)と関連する低レベルメトリクスが,実際には誤解を招くものであり,具体的対話研究の目標と一致していないことを論じる。
論文 参考訳(メタデータ) (2022-10-10T05:51:40Z) - A Minimalist Dataset for Systematic Generalization of Perception,
Syntax, and Semantics [131.93113552146195]
我々は,機械が一般化可能な概念を学習する能力を調べるため,新しいデータセットであるHINT(Hand written arithmetic with INTegers)を提案する。
HINTでは、イメージなどの生信号から概念がどのように認識されるかを学ぶことが機械のタスクである。
我々は、RNN、Transformer、GPT-3など、様々なシーケンス・ツー・シーケンスモデルで広範囲に実験を行った。
論文 参考訳(メタデータ) (2021-03-02T01:32:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。