論文の概要: Enhancing Language Models for Financial Relation Extraction with Named Entities and Part-of-Speech
- arxiv url: http://arxiv.org/abs/2405.06665v1
- Date: Thu, 2 May 2024 14:33:05 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-27 03:27:39.870312
- Title: Enhancing Language Models for Financial Relation Extraction with Named Entities and Part-of-Speech
- Title(参考訳): 名前付きエンティティとパート・オブ・音声を用いた金融関係抽出のための言語モデルの構築
- Authors: Menglin Li, Kwan Hui Lim,
- Abstract要約: FinREタスクは、ファイナンシャルステートメント/テキストの一部が与えられたエンティティとそれらの関係を識別する。
名前付きエンティティ認識 (NER) とPart-Of-Speech (POS) を併用することで、事前学習言語モデルの性能を向上させる戦略を提案する。
金融関係データセットの実験は有望な結果を示し、既存のモデルにNERとPOSを組み込むことの利点を強調している。
- 参考スコア(独自算出の注目度): 5.104305392215512
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The Financial Relation Extraction (FinRE) task involves identifying the entities and their relation, given a piece of financial statement/text. To solve this FinRE problem, we propose a simple but effective strategy that improves the performance of pre-trained language models by augmenting them with Named Entity Recognition (NER) and Part-Of-Speech (POS), as well as different approaches to combine these information. Experiments on a financial relations dataset show promising results and highlights the benefits of incorporating NER and POS in existing models. Our dataset and codes are available at https://github.com/kwanhui/FinRelExtract.
- Abstract(参考訳): 金融関係抽出(FinRE)タスクは、財務諸表や文書からエンティティとそれらの関係を識別する。
このFinRE問題を解決するために,NERとPOSを併用することで,事前学習した言語モデルの性能を向上する,シンプルかつ効果的な手法を提案する。
金融関係データセットの実験は有望な結果を示し、既存のモデルにNERとPOSを組み込むことの利点を強調している。
データセットとコードはhttps://github.com/kwanhui/FinRelExtract.comから入手可能です。
関連論文リスト
- Learning to Extract Structured Entities Using Language Models [52.281701191329]
機械学習の最近の進歩は、情報抽出の分野に大きな影響を与えている。
タスクをエンティティ中心にすることで、さまざまなメトリクスの使用を可能にします。
我々は、Structured Entity extractを導入し、Adroximate Entity Set OverlaPメトリックを提案し、この分野にコントリビュートします。
論文 参考訳(メタデータ) (2024-02-06T22:15:09Z) - FinGPT: Instruction Tuning Benchmark for Open-Source Large Language
Models in Financial Datasets [9.714447724811842]
本稿では,オープンソースの大規模言語モデルに対して,インストラクションチューニングパラダイムに固有のアプローチを導入する。
私たちは、オープンソースのモデルの相互運用性に乗じて、シームレスで透過的な統合を確保します。
本稿では,エンドツーエンドのトレーニングとテストのためのベンチマーク手法を提案し,費用対効果を生かした。
論文 参考訳(メタデータ) (2023-10-07T12:52:58Z) - GPT-FinRE: In-context Learning for Financial Relation Extraction using
Large Language Models [1.9559144041082446]
本稿では,そのようなデータセットREFinDにおける関係抽出のソリューションについて述べる。
本稿では,文脈内学習(ICL)の枠組みとしてOpenAIモデルを用いた。
総合で3位になった。最高のF1スコアは0.718だ。
論文 参考訳(メタデータ) (2023-06-30T10:12:30Z) - FinRED: A Dataset for Relation Extraction in Financial Domain [23.700539609170015]
FinREDは金融ニュースから収集された関係抽出データセットであり、金融ドメインから関係を含むコールスクリプティングを取得する。
一般関係抽出データセットと比較してFinREDの性能は著しく低下している。
論文 参考訳(メタデータ) (2023-06-06T14:52:47Z) - Enriching Relation Extraction with OpenIE [70.52564277675056]
関係抽出(RE)は情報抽出(IE)のサブ分野である
本稿では,オープン情報抽出(OpenIE)の最近の取り組みがREの課題の改善にどのように役立つかを検討する。
本稿では,2つの注釈付きコーパスであるKnowledgeNetとFewRelを用いた実験により,拡張モデルの精度向上を実証した。
論文 参考訳(メタデータ) (2022-12-19T11:26:23Z) - You can't pick your neighbors, or can you? When and how to rely on
retrieval in the $k$NN-LM [65.74934004876914]
Retrieval-enhanced Language Model (LM) は、大規模な外部データストアから取得したテキストにそれらの予測を条件付ける。
そのようなアプローチの1つ、$k$NN-LMは、既存のLMの予測を$k$-nearest近くのモデルの出力と補間する。
本研究では,2つの英語モデルデータセットに対するアプローチの有効性を実証的に測定する。
論文 参考訳(メタデータ) (2022-10-28T02:57:40Z) - Visualizing the Relationship Between Encoded Linguistic Information and
Task Performance [53.223789395577796]
本稿では,Pareto Optimalityの観点から,符号化言語情報とタスクパフォーマンスの動的関係について検討する。
我々は、機械翻訳と言語モデリングという2つの一般的なNLPタスクの実験を行い、様々な言語情報とタスクパフォーマンスの関係について検討する。
実験結果から,NLPタスクには構文情報が有用であるのに対して,より構文情報の符号化が必ずしも優れたパフォーマンスをもたらすとは限らないことが示唆された。
論文 参考訳(メタデータ) (2022-03-29T19:03:10Z) - Exploiting Network Structures to Improve Semantic Representation for the
Financial Domain [9.13755431537592]
本稿では、FinSim-3におけるMiniTrueチームが、英語の金融分野におけるセマンティックな類似性を学習するタスクについて述べる。
提案手法では,変換言語モデルから学習した文脈埋め込みと,外部知識ソースから抽出したネットワーク構造埋め込みを組み合わせる。
実験結果から,知識グラフ埋め込みモデルの方が文脈埋め込みのみのモデルよりも優れた結果が得られることがわかった。
論文 参考訳(メタデータ) (2021-07-13T07:32:18Z) - Named Entity Recognition and Relation Extraction using Enhanced Table
Filling by Contextualized Representations [14.614028420899409]
提案手法は,複雑な手作り特徴やニューラルネットワークアーキテクチャを伴わずに,エンティティ参照と長距離依存関係の表現を計算する。
我々はまた、歴史に基づく予測や検索戦略に頼ることなく、関係ラベルを一度に予測するためにテンソルドット積を適用する。
その単純さにもかかわらず、実験の結果、提案手法はCoNLL04とACE05の英語データセット上で最先端の手法よりも優れていることが示された。
論文 参考訳(メタデータ) (2020-10-15T04:58:23Z) - Probing Linguistic Features of Sentence-Level Representations in Neural
Relation Extraction [80.38130122127882]
ニューラルリレーション抽出(RE)に関連する言語特性を対象とした14の探索タスクを導入する。
私たちは、40以上の異なるエンコーダアーキテクチャと2つのデータセットでトレーニングされた言語的特徴の組み合わせによって学習された表現を研究するためにそれらを使用します。
アーキテクチャによって引き起こされるバイアスと言語的特徴の含意は、探索タスクのパフォーマンスにおいて明らかに表現されている。
論文 参考訳(メタデータ) (2020-04-17T09:17:40Z) - Coreferential Reasoning Learning for Language Representation [88.14248323659267]
本稿では,コンテキスト内でコアファーデンシャル関係をキャプチャ可能な新しい言語表現モデルCorefBERTを提案する。
実験の結果,既存のベースラインモデルと比較して,CorefBERTは下流のNLPタスクにおいて一貫した大幅な改善を達成できることがわかった。
論文 参考訳(メタデータ) (2020-04-15T03:57:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。