論文の概要: LLM-Generated Black-box Explanations Can Be Adversarially Helpful
- arxiv url: http://arxiv.org/abs/2405.06800v2
- Date: Wed, 29 May 2024 15:18:59 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-30 22:42:17.550253
- Title: LLM-Generated Black-box Explanations Can Be Adversarially Helpful
- Title(参考訳): LLMで作ったブラックボックスの解説は、逆向きに役に立つ
- Authors: Rohan Ajwani, Shashidhar Reddy Javaji, Frank Rudzicz, Zining Zhu,
- Abstract要約: 大規模言語モデル(LLM)は,デジタルアシスタントとして機能することで,複雑な問題の解決と理解を支援する。
私たちの研究は、このアプローチに結びついている隠れたリスクを明らかにします。
LLMの説明が間違った答えを正しく見せると、これは起こります。
- 参考スコア(独自算出の注目度): 16.49758711633611
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large Language Models (LLMs) are becoming vital tools that help us solve and understand complex problems by acting as digital assistants. LLMs can generate convincing explanations, even when only given the inputs and outputs of these problems, i.e., in a ``black-box'' approach. However, our research uncovers a hidden risk tied to this approach, which we call *adversarial helpfulness*. This happens when an LLM's explanations make a wrong answer look right, potentially leading people to trust incorrect solutions. In this paper, we show that this issue affects not just humans, but also LLM evaluators. Digging deeper, we identify and examine key persuasive strategies employed by LLMs. Our findings reveal that these models employ strategies such as reframing the questions, expressing an elevated level of confidence, and cherry-picking evidence to paint misleading answers in a credible light. To examine if LLMs are able to navigate complex-structured knowledge when generating adversarially helpful explanations, we create a special task based on navigating through graphs. Most LLMs are not able to find alternative paths along simple graphs, indicating that their misleading explanations aren't produced by only logical deductions using complex knowledge. These findings shed light on the limitations of the black-box explanation setting and allow us to provide advice on the safe usage of LLMs.
- Abstract(参考訳): 大規模言語モデル(LLM)は,デジタルアシスタントとして機能することで,複雑な問題の解決と理解を支援する重要なツールになりつつある。
LLMは、これらの問題の入力と出力のみを与えられた場合、すなわち `black-box'' アプローチで、説得力のある説明を生成することができる。
しかし、我々の研究はこのアプローチに結びついている隠れたリスクを明らかにし、それを*逆助力(adversarial helpness)*と呼ぶ。
LLMの説明が間違った答えを正しく見せると、これは起こります。
本稿では,この問題が人間だけでなく,LLM評価者にも影響を及ぼすことを示す。
より深く掘り下げて、LLMが採用する主要な説得戦略を特定し、検証する。
以上の結果から,これらのモデルでは,質問の再フレーミング,信頼度の向上,ミスリードした回答を信頼できる光で表現するためのチェリーピッキングエビデンスなどの戦略が採用されていることが明らかとなった。
LLMが逆向きに有用な説明を生成する際に複雑な構造的知識をナビゲートできるかどうかを調べるため、グラフをナビゲートして特別なタスクを作成する。
ほとんどのLSMは、単純なグラフに沿った代替経路を見つけることができず、それらの誤解を招く説明は複雑な知識を用いた論理的推論によってのみ生成されるものではないことを示唆している。
これらの知見は,ブラックボックスの説明設定の限界に光を当て,LLMの安全利用に関するアドバイスを提供する。
関連論文リスト
- Untangle the KNOT: Interweaving Conflicting Knowledge and Reasoning Skills in Large Language Models [51.72963030032491]
大規模言語モデル(LLM)の知識文書は、時代遅れや誤った知識のためにLLMの記憶と矛盾する可能性がある。
我々は,知識紛争解決のための新しいデータセットKNOTを構築した。
論文 参考訳(メタデータ) (2024-04-04T16:40:11Z) - Small Models, Big Insights: Leveraging Slim Proxy Models To Decide When and What to Retrieve for LLMs [60.40396361115776]
本稿では,スリムプロキシモデルを用いた大規模言語モデル (LLM) における知識不足を検知する新しい協調手法であるSlimPLMを提案する。
パラメータがはるかに少ないプロキシモデルを採用し、回答を回答としています。
ヒューリスティックな回答は、LLM内の既知の未知の知識と同様に、ユーザの質問に答えるために必要な知識を予測するのに使用される。
論文 参考訳(メタデータ) (2024-02-19T11:11:08Z) - When Do LLMs Need Retrieval Augmentation? Mitigating LLMs' Overconfidence Helps Retrieval Augmentation [66.01754585188739]
大規模言語モデル(LLM)は、特定の知識を持っていないことを知るのが困難であることが判明した。
Retrieval Augmentation (RA)はLLMの幻覚を緩和するために広く研究されている。
本稿では,LLMの知識境界に対する認識を高めるためのいくつかの手法を提案する。
論文 参考訳(メタデータ) (2024-02-18T04:57:19Z) - Direct Evaluation of Chain-of-Thought in Multi-hop Reasoning with Knowledge Graphs [52.42505579545893]
大規模言語モデル(LLM)は、回答とともにチェーン・オブ・シントの説明を生成するよう促されたとき、強い推論能力を示す。
本稿では,LLMの推論知識と生成したCoTの精度を評価するために,新しい識別的・生成的CoT評価パラダイムを提案する。
論文 参考訳(メタデータ) (2024-02-17T05:22:56Z) - FaithLM: Towards Faithful Explanations for Large Language Models [67.29893340289779]
大きな言語モデル(LLM)は、内部知識と推論能力を活用することで複雑なタスクに対処するのに熟練している。
これらのモデルのブラックボックスの性質は、意思決定プロセスを説明するタスクを複雑にしている。
自然言語 (NL) による LLM の決定を説明するために FaithLM を紹介した。
論文 参考訳(メタデータ) (2024-02-07T09:09:14Z) - Learn to Refuse: Making Large Language Models More Controllable and Reliable through Knowledge Scope Limitation and Refusal Mechanism [0.0]
大規模言語モデル(LLM)は印象的な言語理解と生成能力を示している。
これらのモデルは欠陥がなく、しばしばエラーや誤報を含む応答を生成する。
本稿では,LLMに対して,誤りを避けるために,難解な質問への回答を拒否するように指示する拒絶機構を提案する。
論文 参考訳(メタデータ) (2023-11-02T07:20:49Z) - Knowing What LLMs DO NOT Know: A Simple Yet Effective Self-Detection Method [36.24876571343749]
大規模言語モデル(LLM)は自然言語処理(NLP)タスクにおいて大きな可能性を示している。
近年の文献では、LLMは断続的に非実効応答を生成する。
本研究では,LLM が知らない質問が非現実的な結果を生成する傾向にあることを検知する新たな自己検出手法を提案する。
論文 参考訳(メタデータ) (2023-10-27T06:22:14Z) - Large Language Models Help Humans Verify Truthfulness -- Except When They Are Convincingly Wrong [35.64962031447787]
大規模言語モデル(LLM)は、Web上の情報へのアクセスにますます使われています。
80人のクラウドワーカーによる実験では,事実チェックを容易にするために,言語モデルと検索エンジン(情報検索システム)を比較した。
LLMの説明を読むユーザーは、類似の精度を保ちながら、検索エンジンを使用するものよりもはるかに効率的である。
論文 参考訳(メタデータ) (2023-10-19T08:09:58Z) - Investigating Answerability of LLMs for Long-Form Question Answering [35.41413072729483]
実用的で影響力のある応用がいくつかあるので、長文質問応答(LFQA)に焦点を当てる。
本稿では,要約の要約から質問生成手法を提案し,長い文書の要約からフォローアップ質問を生成することで,困難な設定を実現できることを示す。
論文 参考訳(メタデータ) (2023-09-15T07:22:56Z) - Investigating the Factual Knowledge Boundary of Large Language Models with Retrieval Augmentation [109.8527403904657]
大規模言語モデル(LLM)は,その知識に対する信頼度が低く,内部知識と外部知識の衝突をうまく扱えないことを示す。
検索の強化は、LLMの知識境界に対する認識を高める効果的なアプローチであることが証明されている。
本稿では,文書を動的に活用するための簡易な手法を提案する。
論文 参考訳(メタデータ) (2023-07-20T16:46:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。