論文の概要: G-FARS: Gradient-Field-based Auto-Regressive Sampling for 3D Part Grouping
- arxiv url: http://arxiv.org/abs/2405.06828v1
- Date: Fri, 10 May 2024 21:58:40 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-14 19:55:18.174870
- Title: G-FARS: Gradient-Field-based Auto-Regressive Sampling for 3D Part Grouping
- Title(参考訳): G-FARS:3次元部分グルーピングのためのグラディエントフィールド型自動回帰サンプリング
- Authors: Junfeng Cheng, Tania Stathaki,
- Abstract要約: 本稿では,3次元部分グルーピングタスクに特化して,グラディエントフィールドに基づく自動回帰サンプリングフレームワーク(G-FARS)を提案する。
本フレームワークでは,部分選択の観点から,ログ条件付き確率密度の勾配を学習するために,勾配場に基づく選択グラフニューラルネットワーク(GNN)を設計する。
我々のフレームワークは、混合部分集合からそれらを反復的に選択することで、自律的に3Dパーツをグループ化することができる。
- 参考スコア(独自算出の注目度): 6.24302896438145
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper proposes a novel task named "3D part grouping". Suppose there is a mixed set containing scattered parts from various shapes. This task requires algorithms to find out every possible combination among all the parts. To address this challenge, we propose the so called Gradient Field-based Auto-Regressive Sampling framework (G-FARS) tailored specifically for the 3D part grouping task. In our framework, we design a gradient-field-based selection graph neural network (GNN) to learn the gradients of a log conditional probability density in terms of part selection, where the condition is the given mixed part set. This innovative approach, implemented through the gradient-field-based selection GNN, effectively captures complex relationships among all the parts in the input. Upon completion of the training process, our framework becomes capable of autonomously grouping 3D parts by iteratively selecting them from the mixed part set, leveraging the knowledge acquired by the trained gradient-field-based selection GNN. Our code is available at: https://github.com/J-F-Cheng/G-FARS-3DPartGrouping.
- Abstract(参考訳): 本稿では「3D部分グループ化」という新しい課題を提案する。
様々な形状から散らばった部分を含む混合集合が存在すると仮定する。
このタスクは、全ての部品のあらゆる組み合わせを見つけるアルゴリズムを必要とする。
この課題に対処するため、我々は3D部分グループ化タスクに特化した、G-FARS(Gradient Field-based Auto-Regressive Smpling framework)を提案する。
本フレームワークでは,条件が与えられた混合部分集合である部分選択の観点から,ログ条件確率密度の勾配を学習するために,勾配場に基づく選択グラフニューラルネットワーク(GNN)を設計する。
この革新的なアプローチは、勾配場に基づく選択GNNを通じて実装され、入力のすべての部分間の複雑な関係を効果的にキャプチャする。
学習プロセスが完了すると、このフレームワークは、訓練された勾配場に基づくGNNが獲得した知識を活用して、混合部分集合からそれらを反復的に選択することで、自律的に3D部品をグループ化することができる。
私たちのコードは、https://github.com/J-F-Cheng/G-FARS-3DPartGrouping.comで利用可能です。
関連論文リスト
- CompGS: Unleashing 2D Compositionality for Compositional Text-to-3D via Dynamically Optimizing 3D Gaussians [97.15119679296954]
CompGS は 3D Gaussian Splatting (GS) を用いた,効率的なテキストから3Dコンテンツ生成のための新しい生成フレームワークである。
CompGSは簡単に3D編集に拡張でき、シーン生成を容易にする。
論文 参考訳(メタデータ) (2024-10-28T04:35:14Z) - Towards Realistic Example-based Modeling via 3D Gaussian Stitching [31.710954782769377]
サンプル誘導合成を用いた点ベース表現における複数のガウス場を組み合わせた例に基づくモデリング手法を提案する。
具体的には、構成について、複数のフィールドをリアルタイムでセグメント化し変換するGUIを作成し、意味論的に意味のあるモデルの合成を容易に得る。
テクスチャブレンディングでは、3DGSの離散的および不規則な性質のため、SeamlssNeRFがサポートされないため、直接勾配伝播を適用する。
論文 参考訳(メタデータ) (2024-08-28T11:13:27Z) - ShapeSplat: A Large-scale Dataset of Gaussian Splats and Their Self-Supervised Pretraining [104.34751911174196]
ShapeNetとModelNetを用いた大規模3DGSデータセットを構築した。
データセットのShapeSplatは、87のユニークなカテゴリから65Kのオブジェクトで構成されています。
textbftextitGaussian-MAEを導入し、ガウスパラメータからの表現学習の独特な利点を強調した。
論文 参考訳(メタデータ) (2024-08-20T14:49:14Z) - AutoInst: Automatic Instance-Based Segmentation of LiDAR 3D Scans [41.17467024268349]
3D環境を理解するには、きめ細かい風景を理解する必要がある。
教師なしの方法で3次元シーンのインスタンスセグメンテーションを予測することを提案する。
平均精度は13.3%,F1スコアは9.1%向上した。
論文 参考訳(メタデータ) (2024-03-24T22:53:16Z) - CNS-Edit: 3D Shape Editing via Coupled Neural Shape Optimization [56.47175002368553]
本稿では、3次元形状編集を潜在空間で暗黙的に行うために,結合表現とニューラルボリューム最適化に基づく新しい手法を提案する。
まず,3次元形状編集を支援する結合型ニューラル形状表現を設計する。
第二に、結合したニューラルネットワークの形状最適化手順を定式化し、編集操作対象の2つの結合した成分を協調最適化する。
論文 参考訳(メタデータ) (2024-02-04T01:52:56Z) - SAGD: Boundary-Enhanced Segment Anything in 3D Gaussian via Gaussian Decomposition [66.80822249039235]
3Dガウススプラッティングは、新しいビュー合成のための代替の3D表現として登場した。
SAGDは3D-GSのための概念的にシンプルで効果的な境界拡張パイプラインである。
提案手法は粗い境界問題なく高品質な3Dセグメンテーションを実現し,他のシーン編集作業にも容易に適用できる。
論文 参考訳(メタデータ) (2024-01-31T14:19:03Z) - Gaussian Grouping: Segment and Edit Anything in 3D Scenes [65.49196142146292]
ガウシアン・グルーピング(ガウシアン・グルーピング)はガウシアン・スプラッティングを拡張して,オープンワールドの3Dシーンで何かを共同で再構築・分割する。
暗黙のNeRF表現と比較すると,グループ化された3次元ガウシアンは,高画質,微粒度,高効率で,あらゆるものを3次元で再構成,分割,編集することができる。
論文 参考訳(メタデータ) (2023-12-01T17:09:31Z) - Predicting Protein-Ligand Binding Affinity with Equivariant Line Graph
Network [22.396125176265997]
既存のアプローチでは、3Dタンパク質-リガンド複合体を2次元(2次元)グラフに変換し、グラフニューラルネットワーク(GNN)を使用して結合親和性を予測する。
本稿では,3次元タンパク質配位子複合体の親和性予測のための新しいEquivariant Line Graph Network (ELGN)を提案する。
2つの実データセットの実験結果から,複数の最先端ベースライン上でのELGNの有効性が示された。
論文 参考訳(メタデータ) (2022-10-27T02:15:52Z) - Deep Hough Voting for Robust Global Registration [52.40611370293272]
6次元変換パラメータ空間におけるハフ投票を利用した実世界の3Dスキャンのペア登録のための効率的なフレームワークを提案する。
提案手法は, 3DMatch と 3DLoMatch のベンチマークにおいて, KITTI odometry データセットで同等の性能を達成しながら, 最先端の手法よりも優れている。
論文 参考訳(メタデータ) (2021-09-09T14:38:06Z) - Spatially Invariant Unsupervised 3D Object Segmentation with Graph
Neural Networks [23.729853358582506]
本研究では,空間混合モデルとして点雲をモデル化するフレームワークSPAIR3Dを提案する。
変分オートエンコーダ(VAE)を用いて3次元の多目的表現とセグメンテーションを共同で学習する。
実験の結果,SPAIR3Dは外見情報のない可変物体を検出・分割できることがわかった。
論文 参考訳(メタデータ) (2021-06-10T09:20:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。