Intrinsic Fairness-Accuracy Tradeoffs under Equalized Odds
- URL: http://arxiv.org/abs/2405.07393v1
- Date: Sun, 12 May 2024 23:15:21 GMT
- Title: Intrinsic Fairness-Accuracy Tradeoffs under Equalized Odds
- Authors: Meiyu Zhong, Ravi Tandon,
- Abstract summary: We study the tradeoff between fairness and accuracy under the statistical notion of equalized odds.
We present a new upper bound on the accuracy as a function of the fairness budget.
Our results show that achieving high accuracy subject to a low-bias could be fundamentally limited based on the statistical disparity across the groups.
- Score: 8.471466670802817
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: With the growing adoption of machine learning (ML) systems in areas like law enforcement, criminal justice, finance, hiring, and admissions, it is increasingly critical to guarantee the fairness of decisions assisted by ML. In this paper, we study the tradeoff between fairness and accuracy under the statistical notion of equalized odds. We present a new upper bound on the accuracy (that holds for any classifier), as a function of the fairness budget. In addition, our bounds also exhibit dependence on the underlying statistics of the data, labels and the sensitive group attributes. We validate our theoretical upper bounds through empirical analysis on three real-world datasets: COMPAS, Adult, and Law School. Specifically, we compare our upper bound to the tradeoffs that are achieved by various existing fair classifiers in the literature. Our results show that achieving high accuracy subject to a low-bias could be fundamentally limited based on the statistical disparity across the groups.
Related papers
- Causal Context Connects Counterfactual Fairness to Robust Prediction and
Group Fairness [15.83823345486604]
We motivatefactual fairness by showing that there is not a fundamental trade-off between fairness and accuracy.
Counterfactual fairness can sometimes be tested by measuring relatively simple group fairness metrics.
arXiv Detail & Related papers (2023-10-30T16:07:57Z) - Learning Fair Classifiers via Min-Max F-divergence Regularization [13.81078324883519]
We introduce a novel min-max F-divergence regularization framework for learning fair classification models.
We show that F-divergence measures possess convexity and differentiability properties.
We show that the proposed framework achieves state-of-the-art performance with respect to the trade-off between accuracy and fairness.
arXiv Detail & Related papers (2023-06-28T20:42:04Z) - Individual Fairness under Uncertainty [26.183244654397477]
Algorithmic fairness is an established area in machine learning (ML) algorithms.
We propose an individual fairness measure and a corresponding algorithm that deal with the challenges of uncertainty arising from censorship in class labels.
We argue that this perspective represents a more realistic model of fairness research for real-world application deployment.
arXiv Detail & Related papers (2023-02-16T01:07:58Z) - Understanding Unfairness in Fraud Detection through Model and Data Bias
Interactions [4.159343412286401]
We argue that algorithmic unfairness stems from interactions between models and biases in the data.
We study a set of hypotheses regarding the fairness-accuracy trade-offs that fairness-blind ML algorithms exhibit under different data bias settings.
arXiv Detail & Related papers (2022-07-13T15:18:30Z) - How Robust is Your Fairness? Evaluating and Sustaining Fairness under
Unseen Distribution Shifts [107.72786199113183]
We propose a novel fairness learning method termed CUrvature MAtching (CUMA)
CUMA achieves robust fairness generalizable to unseen domains with unknown distributional shifts.
We evaluate our method on three popular fairness datasets.
arXiv Detail & Related papers (2022-07-04T02:37:50Z) - Measuring Fairness of Text Classifiers via Prediction Sensitivity [63.56554964580627]
ACCUMULATED PREDICTION SENSITIVITY measures fairness in machine learning models based on the model's prediction sensitivity to perturbations in input features.
We show that the metric can be theoretically linked with a specific notion of group fairness (statistical parity) and individual fairness.
arXiv Detail & Related papers (2022-03-16T15:00:33Z) - MultiFair: Multi-Group Fairness in Machine Learning [52.24956510371455]
We study multi-group fairness in machine learning (MultiFair)
We propose a generic end-to-end algorithmic framework to solve it.
Our proposed framework is generalizable to many different settings.
arXiv Detail & Related papers (2021-05-24T02:30:22Z) - Fair Densities via Boosting the Sufficient Statistics of Exponential
Families [72.34223801798422]
We introduce a boosting algorithm to pre-process data for fairness.
Our approach shifts towards better data fitting while still ensuring a minimal fairness guarantee.
Empirical results are present to display the quality of result on real-world data.
arXiv Detail & Related papers (2020-12-01T00:49:17Z) - Fairness in Semi-supervised Learning: Unlabeled Data Help to Reduce
Discrimination [53.3082498402884]
A growing specter in the rise of machine learning is whether the decisions made by machine learning models are fair.
We present a framework of fair semi-supervised learning in the pre-processing phase, including pseudo labeling to predict labels for unlabeled data.
A theoretical decomposition analysis of bias, variance and noise highlights the different sources of discrimination and the impact they have on fairness in semi-supervised learning.
arXiv Detail & Related papers (2020-09-25T05:48:56Z) - Justicia: A Stochastic SAT Approach to Formally Verify Fairness [38.482411134083236]
We propose a satisfiability framework, Justicia, that formally verifies different fairness measures of supervised learning algorithms.
Justicia is scalable, accurate, and operates on non-Boolean and compound sensitive attributes unlike existing distribution-based verifiers.
arXiv Detail & Related papers (2020-09-14T15:23:51Z) - Fairness Constraints in Semi-supervised Learning [56.48626493765908]
We develop a framework for fair semi-supervised learning, which is formulated as an optimization problem.
We theoretically analyze the source of discrimination in semi-supervised learning via bias, variance and noise decomposition.
Our method is able to achieve fair semi-supervised learning, and reach a better trade-off between accuracy and fairness than fair supervised learning.
arXiv Detail & Related papers (2020-09-14T04:25:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.