Compressed Online Learning of Conditional Mean Embedding
- URL: http://arxiv.org/abs/2405.07432v1
- Date: Mon, 13 May 2024 02:18:49 GMT
- Title: Compressed Online Learning of Conditional Mean Embedding
- Authors: Boya Hou, Sina Sanjari, Alec Koppel, Subhonmesh Bose,
- Abstract summary: conditional mean embedding (CME) encodes Markovian kernels through their actions on probability distributions.
We present an algorithm to learn the CME incrementally from data via an operator-valued gradient descent.
- Score: 11.720101697635148
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The conditional mean embedding (CME) encodes Markovian stochastic kernels through their actions on probability distributions embedded within the reproducing kernel Hilbert spaces (RKHS). The CME plays a key role in several well-known machine learning tasks such as reinforcement learning, analysis of dynamical systems, etc. We present an algorithm to learn the CME incrementally from data via an operator-valued stochastic gradient descent. As is well-known, function learning in RKHS suffers from scalability challenges from large data. We utilize a compression mechanism to counter the scalability challenge. The core contribution of this paper is a finite-sample performance guarantee on the last iterate of the online compressed operator learning algorithm with fast-mixing Markovian samples, when the target CME may not be contained in the hypothesis space. We illustrate the efficacy of our algorithm by applying it to the analysis of an example dynamical system.
Related papers
- Kernel Sum of Squares for Data Adapted Kernel Learning of Dynamical Systems from Data: A global optimization approach [0.19999259391104385]
This paper examines the application of the Kernel Sum of Squares (KSOS) method for enhancing kernel learning from data.
Traditional kernel-based methods frequently struggle with selecting optimal base kernels and parameter tuning.
KSOS mitigates these issues by leveraging a global optimization framework with kernel-based surrogate functions.
arXiv Detail & Related papers (2024-08-12T19:32:28Z) - Provably Efficient Information-Directed Sampling Algorithms for Multi-Agent Reinforcement Learning [50.92957910121088]
This work designs and analyzes a novel set of algorithms for multi-agent reinforcement learning (MARL) based on the principle of information-directed sampling (IDS)
For episodic two-player zero-sum MGs, we present three sample-efficient algorithms for learning Nash equilibrium.
We extend Reg-MAIDS to multi-player general-sum MGs and prove that it can learn either the Nash equilibrium or coarse correlated equilibrium in a sample efficient manner.
arXiv Detail & Related papers (2024-04-30T06:48:56Z) - Benchmarking Quantum Generative Learning: A Study on Scalability and Noise Resilience using QUARK [0.3624329910445628]
This paper investigates the scalability and noise resilience of quantum generative learning applications.
We employ rigorous benchmarking techniques to track progress and identify challenges in scaling QML algorithms.
We show that QGANs are not as affected by the curse of dimensionality as QCBMs and to which extent QCBMs are resilient to noise.
arXiv Detail & Related papers (2024-03-27T15:05:55Z) - Fast Value Tracking for Deep Reinforcement Learning [7.648784748888187]
Reinforcement learning (RL) tackles sequential decision-making problems by creating agents that interact with their environment.
Existing algorithms often view these problem as static, focusing on point estimates for model parameters to maximize expected rewards.
Our research leverages the Kalman paradigm to introduce a novel quantification and sampling algorithm called Langevinized Kalman TemporalTD.
arXiv Detail & Related papers (2024-03-19T22:18:19Z) - Dynamic Semantic Compression for CNN Inference in Multi-access Edge
Computing: A Graph Reinforcement Learning-based Autoencoder [82.8833476520429]
We propose a novel semantic compression method, autoencoder-based CNN architecture (AECNN) for effective semantic extraction and compression in partial offloading.
In the semantic encoder, we introduce a feature compression module based on the channel attention mechanism in CNNs, to compress intermediate data by selecting the most informative features.
In the semantic decoder, we design a lightweight decoder to reconstruct the intermediate data through learning from the received compressed data to improve accuracy.
arXiv Detail & Related papers (2024-01-19T15:19:47Z) - Continual-MAE: Adaptive Distribution Masked Autoencoders for Continual Test-Time Adaptation [49.827306773992376]
Continual Test-Time Adaptation (CTTA) is proposed to migrate a source pre-trained model to continually changing target distributions.
Our proposed method attains state-of-the-art performance in both classification and segmentation CTTA tasks.
arXiv Detail & Related papers (2023-12-19T15:34:52Z) - Heterogenous Memory Augmented Neural Networks [84.29338268789684]
We introduce a novel heterogeneous memory augmentation approach for neural networks.
By introducing learnable memory tokens with attention mechanism, we can effectively boost performance without huge computational overhead.
We show our approach on various image and graph-based tasks under both in-distribution (ID) and out-of-distribution (OOD) conditions.
arXiv Detail & Related papers (2023-10-17T01:05:28Z) - Learning Efficient Coding of Natural Images with Maximum Manifold
Capacity Representations [4.666056064419346]
The efficient coding hypothesis proposes that the response properties of sensory systems are adapted to the statistics of their inputs.
While elegant, information theoretic properties are notoriously difficult to measure in practical settings or to employ as objective functions in optimization.
Here we outline the assumptions that allow manifold capacity to be optimized directly, yielding Maximum Manifold Capacity Representations (MMCR)
arXiv Detail & Related papers (2023-03-06T17:26:30Z) - CCLF: A Contrastive-Curiosity-Driven Learning Framework for
Sample-Efficient Reinforcement Learning [56.20123080771364]
We develop a model-agnostic Contrastive-Curiosity-Driven Learning Framework (CCLF) for reinforcement learning.
CCLF fully exploit sample importance and improve learning efficiency in a self-supervised manner.
We evaluate this approach on the DeepMind Control Suite, Atari, and MiniGrid benchmarks.
arXiv Detail & Related papers (2022-05-02T14:42:05Z) - Inducing Gaussian Process Networks [80.40892394020797]
We propose inducing Gaussian process networks (IGN), a simple framework for simultaneously learning the feature space as well as the inducing points.
The inducing points, in particular, are learned directly in the feature space, enabling a seamless representation of complex structured domains.
We report on experimental results for real-world data sets showing that IGNs provide significant advances over state-of-the-art methods.
arXiv Detail & Related papers (2022-04-21T05:27:09Z) - Compressed Predictive Information Coding [6.220929746808418]
We develop a novel information-theoretic framework, Compressed Predictive Information Coding (CPIC), to extract useful representations from dynamic data.
We derive variational bounds of the CPIC loss which induces the latent space to capture information that is maximally predictive.
We demonstrate that CPIC is able to recover the latent space of noisy dynamical systems with low signal-to-noise ratios.
arXiv Detail & Related papers (2022-03-03T22:47:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.