論文の概要: Evaluating the Language-Based Security for Plugin Development
- arxiv url: http://arxiv.org/abs/2405.07448v1
- Date: Mon, 13 May 2024 03:12:24 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-05-14 14:54:35.760378
- Title: Evaluating the Language-Based Security for Plugin Development
- Title(参考訳): プラグイン開発のための言語ベースのセキュリティの評価
- Authors: Naisheng Liang, Alex Potanin,
- Abstract要約: 我々は,プラグインのアクセス制御脆弱性の理解を深め,効果的なセキュリティ対策を検討することを目的としている。
一般的な開発環境におけるセキュリティメカニズムを評価するために,テストプラグインを開発し,評価した。
アクセス制御脆弱性に対処する能力ベースシステムの有効性を評価するために比較分析を行った。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: With the increasing popularity of plugin-based software systems, ensuring the security of plugins has become a critical concern. When users install plugins or browse websites with plugins from an untrusted source, how can we be sure that they do have any undesirable functions implicitly? In this research, we present a comprehensive study on language-based security mechanisms for plugin development. We aim to enhance the understanding of access control vulnerabilities in plugins and explore effective security measures by introducing a capability-based system. We also developed and evaluated test plugins to assess the security mechanisms in popular development environments such as IntelliJ IDEA and Visual Studio Code by utilising Java, JavaScript, and associated APIs and frameworks. We also explore the concept of capability-based module systems as an alternative approach to plugin security. A comparative analysis is conducted to evaluate the effectiveness of capability-based systems in addressing access control vulnerabilities identified in earlier sections. Finally, recommendations for improving plugin security practices and tools will be presented, emphasizing the importance of robust security measures in the ever-evolving landscape of software plugins.
- Abstract(参考訳): プラグインベースのソフトウェアシステムの人気が高まっているため、プラグインのセキュリティを確保することが重要な問題となっている。
ユーザが信頼できないソースからプラグインをインストールしたり、Webサイトをブラウジングする場合、彼らが暗黙的に望ましくない機能を持っていることをどうやって確認できますか?
本研究では,プラグイン開発のための言語ベースのセキュリティ機構について包括的に研究する。
我々は,プラグインのアクセス制御脆弱性の理解を深め,機能ベースのシステムを導入することで,効果的なセキュリティ対策を探究することを目的としている。
また、IntelliJ IDEAやVisual Studio Codeのような一般的な開発環境におけるセキュリティメカニズムを評価するために、Java、JavaScript、関連するAPIやフレームワークを利用してテストプラグインを開発し、評価した。
また、プラグインセキュリティに代わるアプローチとして、機能ベースのモジュールシステムの概念についても検討する。
初期のセクションで特定されたアクセス制御脆弱性に対処する能力ベースシステムの有効性を評価するために比較分析を行った。
最後に、プラグインのセキュリティプラクティスとツールを改善するための推奨事項が提示され、ソフトウェアプラグインの進化を続ける状況における堅牢なセキュリティ対策の重要性を強調します。
関連論文リスト
- Securing GenAI Multi-Agent Systems Against Tool Squatting: A Zero Trust Registry-Based Approach [0.0]
本稿では,新たな相互運用性標準の文脈におけるツールしゃがみ込みの脅威を解析する。
これらのリスクを軽減するために設計された総合的なツールレジストリシステムを導入している。
その設計原則に基づいて、提案されたレジストリフレームワークは、一般的なツールしゃがみベクトルを効果的に防止することを目的としている。
論文 参考訳(メタデータ) (2025-04-28T16:22:21Z) - Towards Trustworthy GUI Agents: A Survey [64.6445117343499]
本調査では,GUIエージェントの信頼性を5つの重要な次元で検証する。
敵攻撃に対する脆弱性、シーケンシャルな意思決定における障害モードのカスケードなど、大きな課題を特定します。
GUIエージェントが普及するにつれて、堅牢な安全基準と責任ある開発プラクティスを確立することが不可欠である。
論文 参考訳(メタデータ) (2025-03-30T13:26:00Z) - AISafetyLab: A Comprehensive Framework for AI Safety Evaluation and Improvement [73.0700818105842]
我々は、AI安全のための代表的攻撃、防衛、評価方法論を統合する統合されたフレームワークとツールキットであるAISafetyLabを紹介する。
AISafetyLabには直感的なインターフェースがあり、開発者はシームレスにさまざまなテクニックを適用できる。
我々はヴィクナに関する実証的研究を行い、異なる攻撃戦略と防衛戦略を分析し、それらの比較効果に関する貴重な洞察を提供する。
論文 参考訳(メタデータ) (2025-02-24T02:11:52Z) - The Impact of SBOM Generators on Vulnerability Assessment in Python: A Comparison and a Novel Approach [56.4040698609393]
Software Bill of Materials (SBOM) は、ソフトウェア構成における透明性と妥当性を高めるツールとして推奨されている。
現在のSBOM生成ツールは、コンポーネントや依存関係を識別する際の不正確さに悩まされることが多い。
提案するPIP-sbomは,その欠点に対処する新しいピップインスパイアされたソリューションである。
論文 参考訳(メタデータ) (2024-09-10T10:12:37Z) - WebAssembly and Security: a review [0.8962460460173961]
私たちは7つの異なるセキュリティカテゴリを識別することで121の論文を分析します。
このギャップを埋めるために、WebAssemblyのセキュリティを扱う研究の包括的なレビューを提案しています。
論文 参考訳(メタデータ) (2024-07-17T03:37:28Z) - SETC: A Vulnerability Telemetry Collection Framework [0.0]
本稿では,SETC(Security Exploit Telemetry Collection)フレームワークを紹介する。
SETCは、堅牢な防御セキュリティ研究のために、再現可能な脆弱性エクスプロイトデータを大規模に生成する。
この研究は、スケーラブルなエクスプロイトデータ生成を可能にし、脅威モデリング、検出方法、分析技術、戦略の革新を促進する。
論文 参考訳(メタデータ) (2024-06-10T00:13:35Z) - Securing the Open RAN Infrastructure: Exploring Vulnerabilities in Kubernetes Deployments [60.51751612363882]
ソフトウェアベースのオープン無線アクセスネットワーク(RAN)システムのセキュリティへの影響について検討する。
我々は、Near Real-Time RAN Controller(RIC)クラスタをサポートするインフラストラクチャに潜在的な脆弱性と設定ミスがあることを強調します。
論文 参考訳(メタデータ) (2024-05-03T07:18:45Z) - A Survey of Third-Party Library Security Research in Application Software [3.280510821619164]
サードパーティのライブラリが広く使われるようになると、関連するセキュリティリスクと潜在的な脆弱性がますます顕在化している。
悪意のある攻撃者は、これらの脆弱性を利用してシステムに侵入したり、不正な操作を行ったり、機密情報を盗んだりすることができる。
ソフトウェアにおけるサードパーティのライブラリの研究は、この増大するセキュリティ問題に対処する上で、最重要課題となる。
論文 参考訳(メタデータ) (2024-04-27T16:35:02Z) - A Survey and Comparative Analysis of Security Properties of CAN Authentication Protocols [92.81385447582882]
コントロールエリアネットワーク(CAN)バスは車内通信を本質的に安全でないものにしている。
本稿では,CANバスにおける15の認証プロトコルをレビューし,比較する。
実装の容易性に寄与する本質的な運用基準に基づくプロトコルの評価を行う。
論文 参考訳(メタデータ) (2024-01-19T14:52:04Z) - Causative Insights into Open Source Software Security using Large
Language Code Embeddings and Semantic Vulnerability Graph [3.623199159688412]
オープンソースソフトウェア(OSS)の脆弱性は、不正アクセス、データ漏洩、ネットワーク障害、プライバシー侵害を引き起こす可能性がある。
最近のディープラーニング技術は、ソースコードの脆弱性を特定し、ローカライズする上で大きな可能性を示しています。
本研究は,従来の方法に比べてコード修復能力が24%向上したことを示す。
論文 参考訳(メタデータ) (2024-01-13T10:33:22Z) - Exploring Security Practices in Infrastructure as Code: An Empirical
Study [54.669404064111795]
クラウドコンピューティングは、Infrastructure as Code (IaC)ツールが広く使われていることで人気を博している。
スクリプティングプロセスは、実践者が自動的に設定ミスや脆弱性、プライバシリスクを導入するのを防ぐものではない。
セキュリティの確保は、実践者が明確な方針、ガイドライン、ベストプラクティスを理解し、採用することに依存する。
論文 参考訳(メタデータ) (2023-08-07T23:43:32Z) - Leveraging Traceability to Integrate Safety Analysis Artifacts into the
Software Development Process [51.42800587382228]
安全保証ケース(SAC)は、システムの進化中に維持することが困難である。
本稿では,ソフトウェアトレーサビリティを活用して,関連するシステムアーチファクトを安全解析モデルに接続する手法を提案する。
安全ステークホルダーがシステム変更が安全性に与える影響を分析するのに役立つように、システム変更の合理性を設計する。
論文 参考訳(メタデータ) (2023-07-14T16:03:27Z) - Developing Hands-on Labs for Source Code Vulnerability Detection with AI [0.0]
我々は、将来のIT専門家をセキュアなプログラミングの習慣へと導くために、モジュールの学習と実験室への手引きを含むフレームワークを提案する。
このテーマは、ソースコードとログファイル分析ツールを使用して、セキュアなプログラミングプラクティスを学生に紹介するラボで、学習モジュールを設計することを目的としています。
論文 参考訳(メタデータ) (2023-02-01T20:53:58Z) - Dos and Don'ts of Machine Learning in Computer Security [74.1816306998445]
大きな可能性にもかかわらず、セキュリティにおける機械学習は、パフォーマンスを損なう微妙な落とし穴を引き起こす傾向がある。
我々は,学習ベースのセキュリティシステムの設計,実装,評価において共通の落とし穴を特定する。
我々は,落とし穴の回避や軽減を支援するために,研究者を支援するための実用的な勧告を提案する。
論文 参考訳(メタデータ) (2020-10-19T13:09:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。