論文の概要: Transferable Neural Wavefunctions for Solids
- arxiv url: http://arxiv.org/abs/2405.07599v1
- Date: Mon, 13 May 2024 09:59:59 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-14 14:15:10.699754
- Title: Transferable Neural Wavefunctions for Solids
- Title(参考訳): 固体の伝達可能なニューラル波動関数
- Authors: Leon Gerard, Michael Scherbela, Halvard Sutterud, Matthew Foulkes, Philipp Grohs,
- Abstract要約: これらすべてのバリエーションに対して、1つのアンサッツを最適化する方法を示す。
我々は,LiHの2x2x2スーパーセル上で事前学習したネットワークを3x3x3スーパーセルに転送することに成功した。
- 参考スコア(独自算出の注目度): 5.219568203653524
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep-Learning-based Variational Monte Carlo (DL-VMC) has recently emerged as a highly accurate approach for finding approximate solutions to the many-electron Schr\"odinger equation. Despite its favorable scaling with the number of electrons, $\mathcal{O}(n_\text{el}^{4})$, the practical value of DL-VMC is limited by the high cost of optimizing the neural network weights for every system studied. To mitigate this problem, recent research has proposed optimizing a single neural network across multiple systems, reducing the cost per system. Here we extend this approach to solids, where similar but distinct calculations using different geometries, boundary conditions, and supercell sizes are often required. We show how to optimize a single ansatz across all of these variations, reducing the required number of optimization steps by an order of magnitude. Furthermore, we exploit the transfer capabilities of a pre-trained network. We successfully transfer a network, pre-trained on 2x2x2 supercells of LiH, to 3x3x3 supercells. This reduces the number of optimization steps required to simulate the large system by a factor of 50 compared to previous work.
- Abstract(参考訳): 深層学習に基づく変分モンテカルロ(DL-VMC)は、最近、多電子シュリンガー方程式の近似解を見つけるための高精度なアプローチとして登場した。
電子の数で好適なスケーリングである$\mathcal{O}(n_\text{el}^{4})$にもかかわらず、DL-VMCの実用値は、研究対象のシステム毎にニューラルネットワーク重みを最適化するコストによって制限される。
この問題を軽減するため、最近の研究では、複数のシステムにまたがる単一ニューラルネットワークの最適化を提案し、システム当たりのコストを削減している。
ここでは、このアプローチを固体に拡張し、異なるジオメトリー、境界条件、スーパーセルサイズを用いた類似の計算がしばしば必要となる。
これらすべてのバリエーションに対して1つのアンサッツを最適化する方法を示し、必要な最適化ステップの数を桁違いに削減する。
さらに,事前学習ネットワークの転送機能を利用する。
我々は,LiHの2x2x2スーパーセル上で事前学習したネットワークを3x3x3スーパーセルに転送することに成功した。
これにより、大規模なシステムのシミュレートに必要な最適化ステップの数を、以前の作業と比べて50倍削減できる。
関連論文リスト
- Fast and scalable Wasserstein-1 neural optimal transport solver for single-cell perturbation prediction [55.89763969583124]
最適輸送理論はそのような写像を構築するための原則化された枠組みを提供する。
本稿では,Wasserstein-1に基づく新しい最適輸送解法を提案する。
実験により,提案した解法は,2次元データセット上に一意かつ単調な写像を求める際に,$W$ OTソルバを模倣できることを示した。
論文 参考訳(メタデータ) (2024-11-01T14:23:19Z) - Two Sparse Matrices are Better than One: Sparsifying Neural Networks with Double Sparse Factorization [0.0]
重み行列を2つのスパース行列に分解するDouble Sparse Factorization(DSF)を提案する。
提案手法は最先端の結果を達成し,従来のニューラルネットワークのスペーサー化を可能にした。
論文 参考訳(メタデータ) (2024-09-27T15:48:39Z) - Geometry-Informed Neural Operator for Large-Scale 3D PDEs [76.06115572844882]
大規模偏微分方程式の解演算子を学習するために,幾何インフォームド・ニューラル演算子(GINO)を提案する。
我々はGINOを訓練し、わずか500点のデータポイントで車両表面の圧力を予測することに成功した。
論文 参考訳(メタデータ) (2023-09-01T16:59:21Z) - Speed Limits for Deep Learning [67.69149326107103]
熱力学の最近の進歩は、初期重量分布から完全に訓練されたネットワークの最終分布への移動速度の制限を可能にする。
線形および線形化可能なニューラルネットワークに対して,これらの速度制限に対する解析式を提供する。
NTKスペクトルとラベルのスペクトル分解に関するいくつかの妥当なスケーリング仮定を考えると、学習はスケーリングの意味で最適である。
論文 参考訳(メタデータ) (2023-07-27T06:59:46Z) - A Deep Learning algorithm to accelerate Algebraic Multigrid methods in
Finite Element solvers of 3D elliptic PDEs [0.0]
本稿では,有限要素解法として用いる場合の代数的多重グリッド法の計算コストを最小化する新しいDeep Learningアルゴリズムを提案する。
本研究では,大きなスパース行列処理の計算コストを削減し,手前の回帰処理に必要な特徴を保存できることを実験的に証明する。
論文 参考訳(メタデータ) (2023-04-21T09:18:56Z) - Low-complexity Approximate Convolutional Neural Networks [1.7368964547487395]
本稿では,学習された畳み込みニューラルネットワーク(ConvNet)の計算複雑性を最小化する手法を提案する。
この考え方は、与えられたConvNetのすべての要素を計算複雑性を極端に削減できる効率的な近似で近似することである。
このような低複雑さ構造は、低消費電力で効率的なハードウェア設計の道を開く。
論文 参考訳(メタデータ) (2022-07-29T21:59:29Z) - Combinatorial optimization for low bit-width neural networks [23.466606660363016]
低ビット幅のニューラルネットワークは、計算資源を減らすためにエッジデバイスに展開するために広く研究されている。
既存のアプローチでは、2段階の列車・圧縮設定における勾配に基づく最適化に焦点が当てられている。
グリーディ座標降下法とこの新しい手法を組み合わせることで、二項分類タスクにおける競合精度が得られることを示す。
論文 参考訳(メタデータ) (2022-06-04T15:02:36Z) - Hierarchical autoregressive neural networks for statistical systems [0.05156484100374058]
我々は、例えばスピンのような物理的自由度の階層的な結合を、システムの線形範囲$L$のスケーリングに置き換えるニューロンに提案する。
我々は,2次元Isingモデルに対して,最大128×128$スピンの格子をシミュレートし,時間ベンチマークを512×512$の格子に到達させることで,その2次元Isingモデルに対するアプローチを実証した。
論文 参考訳(メタデータ) (2022-03-21T13:55:53Z) - Joint inference and input optimization in equilibrium networks [68.63726855991052]
ディープ均衡モデル(Deep equilibrium model)は、従来のネットワークの深さを予測し、代わりに単一の非線形層の固定点を見つけることによってネットワークの出力を計算するモデルのクラスである。
この2つの設定の間には自然なシナジーがあることが示されています。
この戦略は、生成モデルのトレーニングや、潜時符号の最適化、デノベートやインペインティングといった逆問題に対するトレーニングモデル、対逆トレーニング、勾配に基づくメタラーニングなど、様々なタスクにおいて実証される。
論文 参考訳(メタデータ) (2021-11-25T19:59:33Z) - DS-Net++: Dynamic Weight Slicing for Efficient Inference in CNNs and
Transformers [105.74546828182834]
本稿では,様々な難易度を持つ入力に対して,ネットワークパラメータの一部を適応的にスライスする動的ウェイトスライシングという,ハードウェア効率のよい動的推論方式を示す。
我々は、CNNのフィルタ数とCNNと変換器の多重次元を入力依存的に調整することで、動的スライム可能なネットワーク(DS-Net)と動的スライス可能なネットワーク(DS-Net++)を提案する。
論文 参考訳(メタデータ) (2021-09-21T09:57:21Z) - Communication-Efficient Distributed Stochastic AUC Maximization with
Deep Neural Networks [50.42141893913188]
本稿では,ニューラルネットワークを用いた大規模AUCのための分散変数について検討する。
我々のモデルは通信ラウンドをはるかに少なくし、理論上はまだ多くの通信ラウンドを必要としています。
いくつかのデータセットに対する実験は、我々の理論の有効性を示し、我々の理論を裏付けるものである。
論文 参考訳(メタデータ) (2020-05-05T18:08:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。