Integrity Monitoring of 3D Object Detection in Automated Driving Systems using Raw Activation Patterns and Spatial Filtering
- URL: http://arxiv.org/abs/2405.07600v1
- Date: Mon, 13 May 2024 10:03:03 GMT
- Title: Integrity Monitoring of 3D Object Detection in Automated Driving Systems using Raw Activation Patterns and Spatial Filtering
- Authors: Hakan Yekta Yatbaz, Mehrdad Dianati, Konstantinos Koufos, Roger Woodman,
- Abstract summary: The deep neural network (DNN) models are widely used for object detection in automated driving systems (ADS)
Yet, such models are prone to errors which can have serious safety implications.
Introspection and self-assessment models that aim to detect such errors are therefore of paramount importance for the safe deployment of ADS.
- Score: 12.384452095533396
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The deep neural network (DNN) models are widely used for object detection in automated driving systems (ADS). Yet, such models are prone to errors which can have serious safety implications. Introspection and self-assessment models that aim to detect such errors are therefore of paramount importance for the safe deployment of ADS. Current research on this topic has focused on techniques to monitor the integrity of the perception mechanism in ADS. Existing introspection models in the literature, however, largely concentrate on detecting perception errors by assigning equal importance to all parts of the input data frame to the perception module. This generic approach overlooks the varying safety significance of different objects within a scene, which obscures the recognition of safety-critical errors, posing challenges in assessing the reliability of perception in specific, crucial instances. Motivated by this shortcoming of state of the art, this paper proposes a novel method integrating raw activation patterns of the underlying DNNs, employed by the perception module, analysis with spatial filtering techniques. This novel approach enhances the accuracy of runtime introspection of the DNN-based 3D object detections by selectively focusing on an area of interest in the data, thereby contributing to the safety and efficacy of ADS perception self-assessment processes.
Related papers
- Uncertainty Estimation for 3D Object Detection via Evidential Learning [63.61283174146648]
We introduce a framework for quantifying uncertainty in 3D object detection by leveraging an evidential learning loss on Bird's Eye View representations in the 3D detector.
We demonstrate both the efficacy and importance of these uncertainty estimates on identifying out-of-distribution scenes, poorly localized objects, and missing (false negative) detections.
arXiv Detail & Related papers (2024-10-31T13:13:32Z) - Unsupervised Model Diagnosis [49.36194740479798]
This paper proposes Unsupervised Model Diagnosis (UMO) to produce semantic counterfactual explanations without any user guidance.
Our approach identifies and visualizes changes in semantics, and then matches these changes to attributes from wide-ranging text sources.
arXiv Detail & Related papers (2024-10-08T17:59:03Z) - Zero-shot Degree of Ill-posedness Estimation for Active Small Object Change Detection [8.977792536037956]
In everyday indoor navigation, robots often needto detect non-distinctive small-change objects.
Existing techniques rely on high-quality class-specific object priors to regularize a change detector model.
In this study, we explore the concept of degree-of-ill-posedness (DoI) to improve both passive and activevision.
arXiv Detail & Related papers (2024-05-10T01:56:39Z) - Run-time Monitoring of 3D Object Detection in Automated Driving Systems Using Early Layer Neural Activation Patterns [12.384452095533396]
Integrity monitoring of automated driving systems (ADS) is paramount for ensuring safety.
Recent advancements in deep neural network (DNN)-based object detectors, their susceptibility to detection errors remains a significant concern.
arXiv Detail & Related papers (2024-04-11T12:24:47Z) - Run-time Introspection of 2D Object Detection in Automated Driving
Systems Using Learning Representations [13.529124221397822]
We introduce a novel introspection solution for 2D object detection based on Deep Neural Networks (DNNs)
We implement several state-of-the-art (SOTA) introspection mechanisms for error detection in 2D object detection, using one-stage and two-stage object detectors evaluated on KITTI and BDD datasets.
Our performance evaluation shows that the proposed introspection solution outperforms SOTA methods, achieving an absolute reduction in the missed error ratio of 9% to 17% in the BDD dataset.
arXiv Detail & Related papers (2024-03-02T10:56:14Z) - Analyzing Adversarial Inputs in Deep Reinforcement Learning [53.3760591018817]
We present a comprehensive analysis of the characterization of adversarial inputs, through the lens of formal verification.
We introduce a novel metric, the Adversarial Rate, to classify models based on their susceptibility to such perturbations.
Our analysis empirically demonstrates how adversarial inputs can affect the safety of a given DRL system with respect to such perturbations.
arXiv Detail & Related papers (2024-02-07T21:58:40Z) - Innovative Horizons in Aerial Imagery: LSKNet Meets DiffusionDet for
Advanced Object Detection [55.2480439325792]
We present an in-depth evaluation of an object detection model that integrates the LSKNet backbone with the DiffusionDet head.
The proposed model achieves a mean average precision (MAP) of approximately 45.7%, which is a significant improvement.
This advancement underscores the effectiveness of the proposed modifications and sets a new benchmark in aerial image analysis.
arXiv Detail & Related papers (2023-11-21T19:49:13Z) - Joint object detection and re-identification for 3D obstacle
multi-camera systems [47.87501281561605]
This research paper introduces a novel modification to an object detection network that uses camera and lidar information.
It incorporates an additional branch designed for the task of re-identifying objects across adjacent cameras within the same vehicle.
The results underscore the superiority of this method over traditional Non-Maximum Suppression (NMS) techniques.
arXiv Detail & Related papers (2023-10-09T15:16:35Z) - Uncertainty-Aware AB3DMOT by Variational 3D Object Detection [74.8441634948334]
Uncertainty estimation is an effective tool to provide statistically accurate predictions.
In this paper, we propose a Variational Neural Network-based TANet 3D object detector to generate 3D object detections with uncertainty.
arXiv Detail & Related papers (2023-02-12T14:30:03Z) - Adversarial Machine Learning In Network Intrusion Detection Domain: A
Systematic Review [0.0]
It has been found that deep learning models are vulnerable to data instances that can mislead the model to make incorrect classification decisions.
This survey explores the researches that employ different aspects of adversarial machine learning in the area of network intrusion detection.
arXiv Detail & Related papers (2021-12-06T19:10:23Z) - Understanding Object Detection Through An Adversarial Lens [14.976840260248913]
This paper presents a framework for analyzing and evaluating vulnerabilities of deep object detectors under an adversarial lens.
We demonstrate that the proposed framework can serve as a methodical benchmark for analyzing adversarial behaviors and risks in real-time object detection systems.
We conjecture that this framework can also serve as a tool to assess the security risks and the adversarial robustness of deep object detectors to be deployed in real-world applications.
arXiv Detail & Related papers (2020-07-11T18:41:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.