論文の概要: Reducing Risk for Assistive Reinforcement Learning Policies with Diffusion Models
- arxiv url: http://arxiv.org/abs/2405.07603v1
- Date: Mon, 13 May 2024 10:07:36 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-14 14:15:10.689314
- Title: Reducing Risk for Assistive Reinforcement Learning Policies with Diffusion Models
- Title(参考訳): 拡散モデルを用いた補助強化学習のリスク軽減
- Authors: Andrii Tytarenko,
- Abstract要約: 介護支援ロボティクスは、ケア需要の増加に対応するための、有望なソリューションを提供する。
本研究では,強化学習(RL)と模倣学習を補助ロボットのポリシー設計に応用することを検討した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Care-giving and assistive robotics, driven by advancements in AI, offer promising solutions to meet the growing demand for care, particularly in the context of increasing numbers of individuals requiring assistance. This creates a pressing need for efficient and safe assistive devices, particularly in light of heightened demand due to war-related injuries. While cost has been a barrier to accessibility, technological progress is able to democratize these solutions. Safety remains a paramount concern, especially given the intricate interactions between assistive robots and humans. This study explores the application of reinforcement learning (RL) and imitation learning, in improving policy design for assistive robots. The proposed approach makes the risky policies safer without additional environmental interactions. Through experimentation using simulated environments, the enhancement of the conventional RL approaches in tasks related to assistive robotics is demonstrated.
- Abstract(参考訳): AIの進歩によって推進される介護支援ロボティクスは、ケア需要の増加、特に援助を必要とする個人の増加に対応するための、有望なソリューションを提供する。
これにより、特に戦争関連の負傷による需要の高まりから、効率的で安全な補助装置の需要が押し上げられる。
コストはアクセシビリティの障壁となっているが、技術的進歩はこれらのソリューションを民主化することができる。
特に補助ロボットと人間との複雑な相互作用を考えると、安全は依然として最重要課題である。
本研究では,強化学習(RL)と模倣学習を補助ロボットのポリシー設計に応用することを検討した。
提案手法は,環境相互作用を伴わないリスク政策をより安全にする。
シミュレーション環境を用いた実験により, 補助ロボット工学に関わる課題における従来のRLアプローチの強化が示された。
関連論文リスト
- A Retrospective on the Robot Air Hockey Challenge: Benchmarking Robust, Reliable, and Safe Learning Techniques for Real-world Robotics [53.33976793493801]
私たちは、NeurIPS 2023カンファレンスでRobot Air Hockey Challengeを組織しました。
我々は、シム・トゥ・リアルギャップ、低レベルの制御問題、安全性問題、リアルタイム要件、実世界のデータの限られた可用性など、ロボット工学における実践的な課題に焦点を当てる。
その結果、学習に基づくアプローチと事前知識を組み合わせたソリューションは、実際のデプロイメントが困難である場合にデータのみに依存するソリューションよりも優れていることがわかった。
論文 参考訳(メタデータ) (2024-11-08T17:20:47Z) - Commonsense Reasoning for Legged Robot Adaptation with Vision-Language Models [81.55156507635286]
脚のついたロボットは、様々な環境をナビゲートし、幅広い障害を克服することができる。
現在の学習手法は、人間の監督を伴わずに、予期せぬ状況の長い尾への一般化に苦慮することが多い。
本稿では,VLM-Predictive Control (VLM-PC) というシステムを提案する。
論文 参考訳(メタデータ) (2024-07-02T21:00:30Z) - Advancing Household Robotics: Deep Interactive Reinforcement Learning for Efficient Training and Enhanced Performance [0.0]
強化学習(Reinforcement Learning, RL)は、ロボットが環境と対話することを可能にする重要なロボティクス技術として登場した。
本稿では,Deep Interactive Reinforcement Learningを通じて情報とアドバイスを保存・再利用する新しい手法を提案する。
論文 参考訳(メタデータ) (2024-05-29T01:46:50Z) - Safety Control of Service Robots with LLMs and Embodied Knowledge Graphs [12.787160626087744]
本稿では,大規模言語モデルとERCP(Embodied Robotic Control Prompts)とEKG(Embodied Knowledge Graphs)との新たな統合を提案する。
ERCPは、LLMが安全かつ正確な応答を生成するための事前定義された命令として設計されている。
EKGは、ロボットの動作が安全プロトコルと継続的に一致していることを保証する包括的な知識基盤を提供する。
論文 参考訳(メタデータ) (2024-05-28T05:50:25Z) - Towards Privacy-Aware and Personalised Assistive Robots: A User-Centred Approach [55.5769013369398]
この研究は、フェデレートラーニング(FL)のようなユーザー中心のプライバシーに配慮した技術のパイオニアである。
FLは機密データを共有せずに協調学習を可能にし、プライバシとスケーラビリティの問題に対処する。
この作業には、スマート車椅子アシストのためのソリューションの開発、ユーザの独立性の向上、幸福感の向上が含まれる。
論文 参考訳(メタデータ) (2024-05-23T13:14:08Z) - RACER: Epistemic Risk-Sensitive RL Enables Fast Driving with Fewer Crashes [57.319845580050924]
本稿では,リスク感応制御と適応行動空間のカリキュラムを組み合わせた強化学習フレームワークを提案する。
提案アルゴリズムは,現実世界のオフロード運転タスクに対して,高速なポリシーを学習可能であることを示す。
論文 参考訳(メタデータ) (2024-05-07T23:32:36Z) - Deception Game: Closing the Safety-Learning Loop in Interactive Robot
Autonomy [7.915956857741506]
既存の安全手法は、ロボットが実行時に学習し適応する能力を無視することが多く、過度に保守的な行動を引き起こす。
本稿では,ロボットの進化する不確実性を明示的に考慮した安全制御ポリシを合成するための,新しいクローズドループパラダイムを提案する。
論文 参考訳(メタデータ) (2023-09-03T20:34:01Z) - Safe reinforcement learning of dynamic high-dimensional robotic tasks:
navigation, manipulation, interaction [31.553783147007177]
強化学習では、損傷を起こさない環境を探索する上で、安全はより基本的なものである。
本稿では,各種ロボット作業の強化学習のための安全探索の新たな定式化について紹介する。
我々のアプローチは、幅広い種類のロボットプラットフォームに適用され、データから学んだ複雑な衝突制約の下でも安全を強制する。
論文 参考訳(メタデータ) (2022-09-27T11:23:49Z) - Constrained Reinforcement Learning for Robotics via Scenario-Based
Programming [64.07167316957533]
DRLをベースとしたエージェントの性能を最適化し,その動作を保証することが重要である。
本稿では,ドメイン知識を制約付きDRLトレーニングループに組み込む新しい手法を提案する。
我々の実験は、専門家の知識を活用するために我々のアプローチを用いることで、エージェントの安全性と性能が劇的に向上することを示した。
論文 参考訳(メタデータ) (2022-06-20T07:19:38Z) - Dual-Arm Adversarial Robot Learning [0.6091702876917281]
ロボット学習のためのプラットフォームとしてデュアルアーム設定を提案する。
このセットアップの潜在的なメリットと、追求できる課題と研究の方向性について論じる。
論文 参考訳(メタデータ) (2021-10-15T12:51:57Z) - The Chef's Hat Simulation Environment for Reinforcement-Learning-Based
Agents [54.63186041942257]
本稿では,人間-ロボットインタラクションのシナリオで使用されるように設計されたChef's Hatカードゲームを実装する仮想シミュレーション環境を提案する。
本稿では,強化学習アルゴリズムにおける制御可能かつ再現可能なシナリオを提案する。
論文 参考訳(メタデータ) (2020-03-12T15:52:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。