論文の概要: Towards Robust Benchmarking of Quantum Optimization Algorithms
- arxiv url: http://arxiv.org/abs/2405.07624v1
- Date: Mon, 13 May 2024 10:35:23 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-14 14:05:08.632852
- Title: Towards Robust Benchmarking of Quantum Optimization Algorithms
- Title(参考訳): 量子最適化アルゴリズムのロバストベンチマークに向けて
- Authors: David Bucher, Nico Kraus, Jonas Blenninger, Michael Lachner, Jonas Stein, Claudia Linnhoff-Popien,
- Abstract要約: 既存のベンチマークフレームワークにおける重要な問題は、それぞれが古典的なアプローチで最高の量子を最適化するのと同じ努力をしていないことである。
本稿では,公正なベンチマークに向けての普遍的な手順を包括的にまとめたガイドラインについて述べる。
- 参考スコア(独自算出の注目度): 3.9456729020535013
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Benchmarking the performance of quantum optimization algorithms is crucial for identifying utility for industry-relevant use cases. Benchmarking processes vary between optimization applications and depend on user-specified goals. The heuristic nature of quantum algorithms poses challenges, especially when comparing to classical counterparts. A key problem in existing benchmarking frameworks is the lack of equal effort in optimizing for the best quantum and, respectively, classical approaches. This paper presents a comprehensive set of guidelines comprising universal steps towards fair benchmarks. We discuss (1) application-specific algorithm choice, ensuring every solver is provided with the most fitting mathematical formulation of a problem; (2) the selection of benchmark data, including hard instances and real-world samples; (3) the choice of a suitable holistic figure of merit, like time-to-solution or solution quality within time constraints; and (4) equitable hyperparameter training to eliminate bias towards a particular method. The proposed guidelines are tested across three benchmarking scenarios, utilizing the Max-Cut (MC) and Travelling Salesperson Problem (TSP). The benchmarks employ classical mathematical algorithms, such as Branch-and-Cut (BNC) solvers, classical heuristics, Quantum Annealing (QA), and the Quantum Approximate Optimization Algorithm (QAOA).
- Abstract(参考訳): 量子最適化アルゴリズムのパフォーマンスのベンチマークは、産業関連ユースケースの実用性を特定するために不可欠である。
ベンチマークプロセスは最適化アプリケーションによって異なり、ユーザ指定の目標に依存します。
量子アルゴリズムのヒューリスティックな性質は、特に古典的なアルゴリズムと比較した場合、問題を引き起こす。
既存のベンチマークフレームワークにおける重要な問題は、それぞれが古典的なアプローチで最高の量子を最適化するのと同じ努力をしていないことである。
本稿では,公正なベンチマークに向けての普遍的な手順を包括的にまとめたガイドラインについて述べる。
本稿では,(1)アプリケーション固有のアルゴリズムの選択,各解法が問題の最も適した数学的定式化を備えることを保証すること,(2)ハードインスタンスや実世界のサンプルを含むベンチマークデータの選択,(3)時間制約内での解法や解法品質などのメリットの総合的な図形の選択,(4)特定の方法に対する偏見を排除するための均等なハイパーパラメータトレーニングについて論じる。
提案するガイドラインは, MC(Max-Cut)とTSP(Travelling Salesperson Problem)の3つのベンチマークシナリオで検証される。
ベンチマークでは、ブランチ・アンド・カット(BNC)、古典的ヒューリスティックス、量子アニーリング(QA)、量子近似最適化アルゴリズム(QAOA)などの古典的な数学的アルゴリズムが使用されている。
関連論文リスト
- Provably Faster Algorithms for Bilevel Optimization via Without-Replacement Sampling [96.47086913559289]
勾配に基づくアルゴリズムはバイレベル最適化に広く用いられている。
本研究では,より高速な収束率を実現する非置換サンプリングに基づくアルゴリズムを提案する。
合成および実世界の両方のアプリケーションに対してアルゴリズムを検証する。
論文 参考訳(メタデータ) (2024-11-07T17:05:31Z) - Performance Benchmarking of Quantum Algorithms for Hard Combinatorial Optimization Problems: A Comparative Study of non-FTQC Approaches [0.0]
本研究は、4つの異なる最適化問題にまたがっていくつかの非フォールト耐性量子コンピューティングアルゴリズムを体系的にベンチマークする。
我々のベンチマークには、変分量子固有解法など、ノイズの多い中間スケール量子(NISQ)アルゴリズムが含まれている。
以上の結果から,FTQC以外のアルゴリズムは全ての問題に対して最適に動作しないことが明らかとなり,アルゴリズム戦略の調整の必要性が浮き彫りになった。
論文 参考訳(メタデータ) (2024-10-30T08:41:29Z) - Randomized Benchmarking of Local Zeroth-Order Optimizers for Variational
Quantum Systems [65.268245109828]
古典学のパフォーマンスを、半ランダム化された一連のタスクで比較する。
量子システムにおける一般に好適な性能とクエリ効率のため、局所ゼロ階数に着目する。
論文 参考訳(メタデータ) (2023-10-14T02:13:26Z) - A Review on Quantum Approximate Optimization Algorithm and its Variants [47.89542334125886]
量子近似最適化アルゴリズム(Quantum Approximate Optimization Algorithm、QAOA)は、難解な最適化問題を解くことを目的とした、非常に有望な変分量子アルゴリズムである。
この総合的なレビューは、様々なシナリオにおけるパフォーマンス分析を含む、QAOAの現状の概要を提供する。
我々は,提案アルゴリズムの今後の展望と方向性を探りながら,選択したQAOA拡張と変種の比較研究を行う。
論文 参考訳(メタデータ) (2023-06-15T15:28:12Z) - Exploring the Algorithm-Dependent Generalization of AUPRC Optimization
with List Stability [107.65337427333064]
AUPRC(Area Under the Precision-Recall Curve)の最適化は、機械学習にとって重要な問題である。
本研究では, AUPRC最適化の単依存一般化における最初の試行について述べる。
3つの画像検索データセットの実験は、我々のフレームワークの有効性と健全性に言及する。
論文 参考訳(メタデータ) (2022-09-27T09:06:37Z) - Iteration Complexity of Variational Quantum Algorithms [5.203200173190989]
雑音は量子回路のバイアスによる目的関数の評価を行う。
我々は、欠落した保証を導き、収束率が影響を受けないことを見出す。
論文 参考訳(メタデータ) (2022-09-21T19:18:41Z) - Prog-QAOA: Framework for resource-efficient quantum optimization through classical programs [0.0]
現在の量子最適化アルゴリズムでは、元の問題を二進最適化問題として表現し、量子デバイスに適した等価イジングモデルに変換する必要がある。
目的関数を計算し、制約を認証するための古典的プログラムを設計し、後に量子回路にコンパイルする。
その結果,量子近似最適化アルゴリズム (QAOA) が新たに導入された。
論文 参考訳(メタデータ) (2022-09-07T18:01:01Z) - Stochastic optimization algorithms for quantum applications [0.0]
本稿では、一階法、二階法、量子自然勾配最適化法の使用法を概観し、複素数体で定義される新しいアルゴリズムを提案する。
全ての手法の性能は、変分量子固有解法、量子状態の量子制御、および量子状態推定に応用して評価される。
論文 参考訳(メタデータ) (2022-03-11T16:17:05Z) - Stochastic batch size for adaptive regularization in deep network
optimization [63.68104397173262]
ディープラーニングフレームワークにおける機械学習問題に適用可能な適応正規化を取り入れた一階最適化アルゴリズムを提案する。
一般的なベンチマークデータセットに適用した従来のネットワークモデルに基づく画像分類タスクを用いて,提案アルゴリズムの有効性を実証的に実証した。
論文 参考訳(メタデータ) (2020-04-14T07:54:53Z) - Cross Entropy Hyperparameter Optimization for Constrained Problem
Hamiltonians Applied to QAOA [68.11912614360878]
QAOA(Quantum Approximate Optimization Algorithm)のようなハイブリッド量子古典アルゴリズムは、短期量子コンピュータを実用的に活用するための最も奨励的なアプローチの1つである。
このようなアルゴリズムは通常変分形式で実装され、古典的な最適化法と量子機械を組み合わせて最適化問題の優れた解を求める。
本研究では,クロスエントロピー法を用いてランドスケープを形作り,古典的パラメータがより容易により良いパラメータを発見でき,その結果,性能が向上することを示す。
論文 参考訳(メタデータ) (2020-03-11T13:52:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。