論文の概要: Efficient Matrix Factorization Via Householder Reflections
- arxiv url: http://arxiv.org/abs/2405.07649v2
- Date: Fri, 04 Oct 2024 07:42:20 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-07 15:06:24.039317
- Title: Efficient Matrix Factorization Via Householder Reflections
- Title(参考訳): 家庭用反射器を用いた効率的なマトリックス因子化
- Authors: Anirudh Dash, Aditya Siripuram,
- Abstract要約: 我々は$mathbfH$と$mathbfX$を$mathbfY$から正確に回収することが、$mathbfY$の$Omega$列で保証されていることを示す。
この研究のテクニックが、辞書学習のための代替アルゴリズムの開発に役立つことを願っている。
- 参考スコア(独自算出の注目度): 2.3326951882644553
- License:
- Abstract: Motivated by orthogonal dictionary learning problems, we propose a novel method for matrix factorization, where the data matrix $\mathbf{Y}$ is a product of a Householder matrix $\mathbf{H}$ and a binary matrix $\mathbf{X}$. First, we show that the exact recovery of the factors $\mathbf{H}$ and $\mathbf{X}$ from $\mathbf{Y}$ is guaranteed with $\Omega(1)$ columns in $\mathbf{Y}$ . Next, we show approximate recovery (in the $l\infty$ sense) can be done in polynomial time($O(np)$) with $\Omega(\log n)$ columns in $\mathbf{Y}$ . We hope the techniques in this work help in developing alternate algorithms for orthogonal dictionary learning.
- Abstract(参考訳): 直交辞書学習問題によって動機づけられた行列分解の新しい手法として、データ行列 $\mathbf{Y}$ はハウステリア行列 $\mathbf{H}$ とバイナリ行列 $\mathbf{X}$ の積である。
まず、$\mathbf{H}$ および $\mathbf{X}$ から $\mathbf{Y}$ の正確な回復は、$\mathbf{Y}$ の$\Omega(1)$カラムで保証されることを示す。
次に、多項式時間($O(np)$)と$\Omega(\log n)$ columns in $\mathbf{Y}$ で近似回復($l\infty$ sense)が可能であることを示す。
この研究のテクニックが、直交辞書学習のための代替アルゴリズムの開発に役立つことを願っている。
関連論文リスト
- The Communication Complexity of Approximating Matrix Rank [50.6867896228563]
この問題は通信複雑性のランダム化を$Omega(frac1kcdot n2log|mathbbF|)$とする。
アプリケーションとして、$k$パスを持つ任意のストリーミングアルゴリズムに対して、$Omega(frac1kcdot n2log|mathbbF|)$スペースローバウンドを得る。
論文 参考訳(メタデータ) (2024-10-26T06:21:42Z) - Optimal Sketching for Residual Error Estimation for Matrix and Vector Norms [50.15964512954274]
線形スケッチを用いた行列とベクトルノルムの残差誤差推定問題について検討する。
これは、前作とほぼ同じスケッチサイズと精度で、経験的にかなり有利であることを示す。
また、スパースリカバリ問題に対して$Omega(k2/pn1-2/p)$低いバウンダリを示し、これは$mathrmpoly(log n)$ factorまで厳密である。
論文 参考訳(メタデータ) (2024-08-16T02:33:07Z) - Structured Semidefinite Programming for Recovering Structured
Preconditioners [41.28701750733703]
正定値$mathbfK を mathbbRd times d$ と $mathrmnnz(mathbfK)$ の 0 でないエントリで与えられるアルゴリズムは、時間内に$epsilon$-optimal diagonal preconditioner を計算する。
我々は、行列辞書近似SDPと呼ばれる半定値プログラムのクラスに対して、新しいアルゴリズムを用いて結果を得る。
論文 参考訳(メタデータ) (2023-10-27T16:54:29Z) - A Fast Optimization View: Reformulating Single Layer Attention in LLM
Based on Tensor and SVM Trick, and Solving It in Matrix Multiplication Time [7.613259578185218]
我々は、一層注意ネットワーク目的関数 $L(X,Y) の証明可能な保証を提供することに注力する。
多層LCMネットワークでは、mathbbRn×d2$の行列$Bを層の出力と見なすことができる。
損失関数をトレーニングする反復アルゴリズムを$L(X,Y)$ up $epsilon$で、$widetildeO( (cal T_mathrmmat(n,d) + dで実行される。
論文 参考訳(メタデータ) (2023-09-14T04:23:40Z) - One-sided Matrix Completion from Two Observations Per Row [95.87811229292056]
行列の欠落値を$XTX$で計算する自然アルゴリズムを提案する。
合成データの一方の回収と低被覆ゲノムシークエンシングについて,本アルゴリズムの評価を行った。
論文 参考訳(メタデータ) (2023-06-06T22:35:16Z) - Fast $(1+\varepsilon)$-Approximation Algorithms for Binary Matrix
Factorization [54.29685789885059]
本稿では, 2次行列分解(BMF)問題に対する効率的な$(1+varepsilon)$-approximationアルゴリズムを提案する。
目標は、低ランク因子の積として$mathbfA$を近似することである。
我々の手法はBMF問題の他の一般的な変種に一般化する。
論文 参考訳(メタデータ) (2023-06-02T18:55:27Z) - Randomized and Deterministic Attention Sparsification Algorithms for
Over-parameterized Feature Dimension [18.57735939471469]
我々は注意問題のスパシフィケーションを考慮する。
超大規模特徴量の場合、文の長さをほぼ線形に縮めることができる。
論文 参考訳(メタデータ) (2023-04-10T05:52:38Z) - A General Algorithm for Solving Rank-one Matrix Sensing [15.543065204102714]
マトリックスセンシングの目標は、一連の測定に基づいて、mathbbRn×n$の行列$A_starを復元することである。
本稿では、このランク-$kの仮定を緩和し、より一般的な行列センシング問題を解く。
論文 参考訳(メタデータ) (2023-03-22T04:07:26Z) - Spectral properties of sample covariance matrices arising from random
matrices with independent non identically distributed columns [50.053491972003656]
関数 $texttr(AR(z))$, for $R(z) = (frac1nXXT- zI_p)-1$ and $Ain mathcal M_p$ deterministic, have a standard deviation of order $O(|A|_* / sqrt n)$.
ここでは、$|mathbb E[R(z)] - tilde R(z)|_F を示す。
論文 参考訳(メタデータ) (2021-09-06T14:21:43Z) - The Average-Case Time Complexity of Certifying the Restricted Isometry
Property [66.65353643599899]
圧縮センシングにおいて、100万倍のN$センシング行列上の制限等尺性(RIP)はスパースベクトルの効率的な再構成を保証する。
Mtimes N$ matrices with i.d.$mathcalN(0,1/M)$ entry。
論文 参考訳(メタデータ) (2020-05-22T16:55:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。