Integrating Multi-Physics Simulations and Machine Learning to Define the Spatter Mechanism and Process Window in Laser Powder Bed Fusion
- URL: http://arxiv.org/abs/2405.07823v1
- Date: Mon, 13 May 2024 15:08:02 GMT
- Title: Integrating Multi-Physics Simulations and Machine Learning to Define the Spatter Mechanism and Process Window in Laser Powder Bed Fusion
- Authors: Olabode T. Ajenifujah, Francis Ogoke, Florian Wirth, Jack Beuth, Amir Barati Farimani,
- Abstract summary: In this work, we investigate mechanism of spatter formation, using a high-fidelity modelling tool that was built to simulate the multi-physics phenomena in LPBF.
To understand spatter behavior and formation, we reveal its properties at ejection and evaluate its variation from the meltpool, the source where it is formed.
The relationship between the spatter and the meltpool were evaluated via correlation analysis and machine learning (ML) algorithms for classification tasks.
- Score: 6.024307115154315
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Laser powder bed fusion (LPBF) has shown promise for wide range of applications due to its ability to fabricate freeform geometries and generate a controlled microstructure. However, components generated by LPBF still possess sub-optimal mechanical properties due to the defects that are created during laser-material interactions. In this work, we investigate mechanism of spatter formation, using a high-fidelity modelling tool that was built to simulate the multi-physics phenomena in LPBF. The modelling tool have the capability to capture the 3D resolution of the meltpool and the spatter behavior. To understand spatter behavior and formation, we reveal its properties at ejection and evaluate its variation from the meltpool, the source where it is formed. The dataset of the spatter and the meltpool collected consist of 50 % spatter and 50 % melt pool samples, with features that include position components, velocity components, velocity magnitude, temperature, density and pressure. The relationship between the spatter and the meltpool were evaluated via correlation analysis and machine learning (ML) algorithms for classification tasks. Upon screening different ML algorithms on the dataset, a high accuracy was observed for all the ML models, with ExtraTrees having the highest at 96 % and KNN having the lowest at 94 %.
Related papers
- Deep Neural Operator Enabled Digital Twin Modeling for Additive Manufacturing [9.639126204112937]
A digital twin (DT) behaves as a virtual twin of the real-world physical process.
We present a deep neural operator enabled computational framework of the DT for closed-loop feedback control of the L-PBF process.
The developed DT is envisioned to guide the AM process and facilitate high-quality manufacturing.
arXiv Detail & Related papers (2024-05-13T03:53:46Z) - Multi-fidelity surrogate with heterogeneous input spaces for modeling melt pools in laser-directed energy deposition [0.0]
Multi-fidelity (MF) modeling is a powerful statistical approach that can intelligently blend data from varied fidelity sources.
One major challenge in using MF surrogates to merge a hierarchy of melt pool models is the variability in input spaces.
This paper introduces a novel approach for constructing an MF surrogate for predicting melt pool geometry by integrating models of varying complexity.
arXiv Detail & Related papers (2024-03-19T20:12:46Z) - Data-freeWeight Compress and Denoise for Large Language Models [101.53420111286952]
We propose a novel approach termed Data-free Joint Rank-k Approximation for compressing the parameter matrices.
We achieve a model pruning of 80% parameters while retaining 93.43% of the original performance without any calibration data.
arXiv Detail & Related papers (2024-02-26T05:51:47Z) - Inexpensive High Fidelity Melt Pool Models in Additive Manufacturing
Using Generative Deep Diffusion [40.80426609561942]
Defects in laser powder bed fusion (L-PBF) parts often result from the meso-scale dynamics of the molten alloy near the laser, known as the melt pool.
In this work, we develop a generative deep learning model based on the probabilistic diffusion framework to map low-fidelity, coarse-grained simulation information to the high-fidelity counterpart.
arXiv Detail & Related papers (2023-11-15T19:37:20Z) - Closing the loop: Autonomous experiments enabled by
machine-learning-based online data analysis in synchrotron beamline
environments [80.49514665620008]
Machine learning can be used to enhance research involving large or rapidly generated datasets.
In this study, we describe the incorporation of ML into a closed-loop workflow for X-ray reflectometry (XRR)
We present solutions that provide an elementary data analysis in real time during the experiment without introducing the additional software dependencies in the beamline control software environment.
arXiv Detail & Related papers (2023-06-20T21:21:19Z) - Surrogate Modeling of Melt Pool Thermal Field using Deep Learning [0.0]
We train a convolutional neural network capable of predicting the behavior of the three-dimensional thermal field of the melt pool solely by taking three parameters as input: laser power, laser velocity, and time step.
The network achieves a relative Root Mean Squared Error of 2% to 3% for the temperature field and an average Intersection over Union score of 80% to 90% in predicting the melt pool area.
arXiv Detail & Related papers (2022-07-25T15:27:16Z) - Physics-informed machine learning with differentiable programming for
heterogeneous underground reservoir pressure management [64.17887333976593]
Avoiding over-pressurization in subsurface reservoirs is critical for applications like CO2 sequestration and wastewater injection.
Managing the pressures by controlling injection/extraction are challenging because of complex heterogeneity in the subsurface.
We use differentiable programming with a full-physics model and machine learning to determine the fluid extraction rates that prevent over-pressurization.
arXiv Detail & Related papers (2022-06-21T20:38:13Z) - Multi-fidelity Hierarchical Neural Processes [79.0284780825048]
Multi-fidelity surrogate modeling reduces the computational cost by fusing different simulation outputs.
We propose Multi-fidelity Hierarchical Neural Processes (MF-HNP), a unified neural latent variable model for multi-fidelity surrogate modeling.
We evaluate MF-HNP on epidemiology and climate modeling tasks, achieving competitive performance in terms of accuracy and uncertainty estimation.
arXiv Detail & Related papers (2022-06-10T04:54:13Z) - Prediction of liquid fuel properties using machine learning models with
Gaussian processes and probabilistic conditional generative learning [56.67751936864119]
The present work aims to construct cheap-to-compute machine learning (ML) models to act as closure equations for predicting the physical properties of alternative fuels.
Those models can be trained using the database from MD simulations and/or experimental measurements in a data-fusion-fidelity approach.
The results show that ML models can predict accurately the fuel properties of a wide range of pressure and temperature conditions.
arXiv Detail & Related papers (2021-10-18T14:43:50Z) - Machine learning based in situ quality estimation by molten pool
condition-quality relations modeling using experimental data [14.092644790436635]
We develop a machine learning convolutional neural network (CNN) model for establishing the correlations from the measurable molten pool image and temperature data.
The multi-modality network receives both the camera image and temperature measurement as inputs, yielding the corresponding characterization properties.
The developed models enable molten pool condition-quality relations mapping for building quantitative and collaborative in situ quality estimation and assurance framework.
arXiv Detail & Related papers (2021-03-21T15:57:05Z) - Predictive modeling approaches in laser-based material processing [59.04160452043105]
This study aims to automate and forecast the effect of laser processing on material structures.
The focus is centred on the performance of representative statistical and machine learning algorithms.
Results can set the basis for a systematic methodology towards reducing material design, testing and production cost.
arXiv Detail & Related papers (2020-06-13T17:28:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.