Localized Adaptive Risk Control
- URL: http://arxiv.org/abs/2405.07976v3
- Date: Thu, 10 Oct 2024 07:17:42 GMT
- Title: Localized Adaptive Risk Control
- Authors: Matteo Zecchin, Osvaldo Simeone,
- Abstract summary: Localized Adaptive Risk Control (L-ARC) is an online calibration scheme that targets statistical localized risk guarantees.
L-ARC is demonstrated via experiments to produce prediction sets with risk guarantees across different data subpopulations.
- Score: 35.88667386998423
- License:
- Abstract: Adaptive Risk Control (ARC) is an online calibration strategy based on set prediction that offers worst-case deterministic long-term risk control, as well as statistical marginal coverage guarantees. ARC adjusts the size of the prediction set by varying a single scalar threshold based on feedback from past decisions. In this work, we introduce Localized Adaptive Risk Control (L-ARC), an online calibration scheme that targets statistical localized risk guarantees ranging from conditional risk to marginal risk, while preserving the worst-case performance of ARC. L-ARC updates a threshold function within a reproducing kernel Hilbert space (RKHS), with the kernel determining the level of localization of the statistical risk guarantee. The theoretical results highlight a trade-off between localization of the statistical risk and convergence speed to the long-term risk target. Thanks to localization, L-ARC is demonstrated via experiments to produce prediction sets with risk guarantees across different data subpopulations, significantly improving the fairness of the calibrated model for tasks such as image segmentation and beam selection in wireless networks.
Related papers
- Policy Gradient Methods for Risk-Sensitive Distributional Reinforcement Learning with Provable Convergence [15.720824593964027]
Risk-sensitive reinforcement learning (RL) is crucial for maintaining reliable performance in high-stakes applications.
This paper introduces a policy gradient method for risk-sensitive DRL with general coherent risk measures.
We also design a categorical distributional policy gradient algorithm (CDPG) based on categorical distributional policy evaluation and trajectory gradient estimation.
arXiv Detail & Related papers (2024-05-23T16:16:58Z) - Data-Adaptive Tradeoffs among Multiple Risks in Distribution-Free Prediction [55.77015419028725]
We develop methods that permit valid control of risk when threshold and tradeoff parameters are chosen adaptively.
Our methodology supports monotone and nearly-monotone risks, but otherwise makes no distributional assumptions.
arXiv Detail & Related papers (2024-03-28T17:28:06Z) - Distributional Reinforcement Learning with Online Risk-awareness
Adaption [5.363478475460403]
We introduce a novel framework, Distributional RL with Online Risk Adaption (DRL-ORA)
DRL-ORA dynamically selects the epistemic risk levels via solving a total variation minimization problem online.
We show multiple classes of tasks where DRL-ORA outperforms existing methods that rely on either a fixed risk level or manually predetermined risk level.
arXiv Detail & Related papers (2023-10-08T14:32:23Z) - Safe Deployment for Counterfactual Learning to Rank with Exposure-Based
Risk Minimization [63.93275508300137]
We introduce a novel risk-aware Counterfactual Learning To Rank method with theoretical guarantees for safe deployment.
Our experimental results demonstrate the efficacy of our proposed method, which is effective at avoiding initial periods of bad performance when little data is available.
arXiv Detail & Related papers (2023-04-26T15:54:23Z) - One Risk to Rule Them All: A Risk-Sensitive Perspective on Model-Based
Offline Reinforcement Learning [25.218430053391884]
We propose risk-sensitivity as a mechanism to jointly address both of these issues.
Risk-aversion to aleatoric uncertainty discourages actions that may result in poor outcomes due to environmentity.
Our experiments show that our algorithm achieves competitive performance on deterministic benchmarks.
arXiv Detail & Related papers (2022-11-30T21:24:11Z) - Efficient Risk-Averse Reinforcement Learning [79.61412643761034]
In risk-averse reinforcement learning (RL), the goal is to optimize some risk measure of the returns.
We prove that under certain conditions this inevitably leads to a local-optimum barrier, and propose a soft risk mechanism to bypass it.
We demonstrate improved risk aversion in maze navigation, autonomous driving, and resource allocation benchmarks.
arXiv Detail & Related papers (2022-05-10T19:40:52Z) - Automatic Risk Adaptation in Distributional Reinforcement Learning [26.113528145137497]
The use of Reinforcement Learning (RL) agents in practical applications requires the consideration of suboptimal outcomes.
This is especially important in safety-critical environments, where errors can lead to high costs or damage.
We show reduced failure rates by up to a factor of 7 and improved generalization performance by up to 14% compared to both risk-aware and risk-agnostic agents.
arXiv Detail & Related papers (2021-06-11T11:31:04Z) - Ultra-Reliable Indoor Millimeter Wave Communications using Multiple
Artificial Intelligence-Powered Intelligent Surfaces [115.85072043481414]
We propose a novel framework for guaranteeing ultra-reliable millimeter wave (mmW) communications using multiple artificial intelligence (AI)-enabled reconfigurable intelligent surfaces (RISs)
The use of multiple AI-powered RISs allows changing the propagation direction of the signals transmitted from a mmW access point (AP)
Two centralized and distributed controllers are proposed to control the policies of the mmW AP and RISs.
arXiv Detail & Related papers (2021-03-31T19:15:49Z) - Learning Bounds for Risk-sensitive Learning [86.50262971918276]
In risk-sensitive learning, one aims to find a hypothesis that minimizes a risk-averse (or risk-seeking) measure of loss.
We study the generalization properties of risk-sensitive learning schemes whose optimand is described via optimized certainty equivalents.
arXiv Detail & Related papers (2020-06-15T05:25:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.