HGTDR: Advancing Drug Repurposing with Heterogeneous Graph Transformers
- URL: http://arxiv.org/abs/2405.08031v2
- Date: Sat, 18 May 2024 08:53:37 GMT
- Title: HGTDR: Advancing Drug Repurposing with Heterogeneous Graph Transformers
- Authors: Ali Gharizadeh, Karim Abbasi, Amin Ghareyazi, Mohammad R. K. Mofrad, Hamid R. Rabiee,
- Abstract summary: We propose a new solution, HGTDR (Heterogeneous Graph Transformer for Drug Repurposing), to address the challenges associated with drug repurposing.
By leveraging HGTDR, users gain the ability to manipulate input graphs, extract information from diverse entities, and obtain their desired output.
- Score: 4.04283519345485
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Motivation: Drug repurposing is a viable solution for reducing the time and cost associated with drug development. However, thus far, the proposed drug repurposing approaches still need to meet expectations. Therefore, it is crucial to offer a systematic approach for drug repurposing to achieve cost savings and enhance human lives. In recent years, using biological network-based methods for drug repurposing has generated promising results. Nevertheless, these methods have limitations. Primarily, the scope of these methods is generally limited concerning the size and variety of data they can effectively handle. Another issue arises from the treatment of heterogeneous data, which needs to be addressed or converted into homogeneous data, leading to a loss of information. A significant drawback is that most of these approaches lack end-to-end functionality, necessitating manual implementation and expert knowledge in certain stages. Results: We propose a new solution, HGTDR (Heterogeneous Graph Transformer for Drug Repurposing), to address the challenges associated with drug repurposing. HGTDR is a three-step approach for knowledge graph-based drug re-purposing: 1) constructing a heterogeneous knowledge graph, 2) utilizing a heterogeneous graph transformer network, and 3) computing relationship scores using a fully connected network. By leveraging HGTDR, users gain the ability to manipulate input graphs, extract information from diverse entities, and obtain their desired output. In the evaluation step, we demonstrate that HGTDR performs comparably to previous methods. Furthermore, we review medical studies to validate our method's top ten drug repurposing suggestions, which have exhibited promising results. We also demon-strated HGTDR's capability to predict other types of relations through numerical and experimental validation, such as drug-protein and disease-protein inter-relations.
Related papers
- Regressor-free Molecule Generation to Support Drug Response Prediction [83.25894107956735]
Conditional generation based on the target IC50 score can obtain a more effective sampling space.
Regressor-free guidance combines a diffusion model's score estimation with a regression controller model's gradient based on number labels.
arXiv Detail & Related papers (2024-05-23T13:22:17Z) - Drug Repurposing for Parkinson's Disease Using Random Walk With Restart Algorithm and the Parkinson's Disease Ontology Database [0.0]
We design a novel computational platform that integrates gene expression data, biological networks, and the PDOD database to identify possible drug-repositioning agents for Parkinson's therapy.
We propose gene expression analysis, network prioritization, and drug target data analysis to arrive at a comprehensive evaluation of drug repurposing chances.
arXiv Detail & Related papers (2024-04-11T20:11:25Z) - Zero-shot Learning of Drug Response Prediction for Preclinical Drug
Screening [38.94493676651818]
We propose a zero-shot learning solution for the.
task in preclinical drug screening.
Specifically, we propose a Multi-branch Multi-Source Domain Adaptation Test Enhancement Plug-in, called MSDA.
arXiv Detail & Related papers (2023-10-05T05:55:41Z) - Drug Synergistic Combinations Predictions via Large-Scale Pre-Training
and Graph Structure Learning [82.93806087715507]
Drug combination therapy is a well-established strategy for disease treatment with better effectiveness and less safety degradation.
Deep learning models have emerged as an efficient way to discover synergistic combinations.
Our framework achieves state-of-the-art results in comparison with other deep learning-based methods.
arXiv Detail & Related papers (2023-01-14T15:07:43Z) - A Deep Learning Approach to the Prediction of Drug Side-Effects on
Molecular Graphs [2.4087148947930634]
We develop a methodology to predict drug side-effects using Graph Neural Networks.
We build a dataset from freely accessible and well established data sources.
The results show that our method has an improved classification capability, under many parameters and metrics.
arXiv Detail & Related papers (2022-11-30T10:12:41Z) - Knowledge-Driven New Drug Recommendation [88.35607943144261]
We develop a drug-dependent multi-phenotype few-shot learner to bridge the gap between existing and new drugs.
EDGE eliminates the false-negative supervision signal using an external drug-disease knowledge base.
Results show that EDGE achieves 7.3% improvement on the ROC-AUC score over the best baseline.
arXiv Detail & Related papers (2022-10-11T16:07:52Z) - SSM-DTA: Breaking the Barriers of Data Scarcity in Drug-Target Affinity
Prediction [127.43571146741984]
Drug-Target Affinity (DTA) is of vital importance in early-stage drug discovery.
wet experiments remain the most reliable method, but they are time-consuming and resource-intensive.
Existing methods have primarily focused on developing techniques based on the available DTA data, without adequately addressing the data scarcity issue.
We present the SSM-DTA framework, which incorporates three simple yet highly effective strategies.
arXiv Detail & Related papers (2022-06-20T14:53:25Z) - Deep learning for drug repurposing: methods, databases, and applications [54.08583498324774]
Repurposing existing drugs for new therapies is an attractive solution that accelerates drug development at reduced experimental costs.
In this review, we introduce guidelines on how to utilize deep learning methodologies and tools for drug repurposing.
arXiv Detail & Related papers (2022-02-08T09:42:08Z) - SafeDrug: Dual Molecular Graph Encoders for Safe Drug Recommendations [59.590084937600764]
We propose a DDI-controllable drug recommendation model named SafeDrug to leverage drugs' molecule structures and model DDIs explicitly.
On a benchmark dataset, our SafeDrug is relatively shown to reduce DDI by 19.43% and improves 2.88% on Jaccard similarity between recommended and actually prescribed drug combinations over previous approaches.
arXiv Detail & Related papers (2021-05-05T00:20:48Z) - A Review of Biomedical Datasets Relating to Drug Discovery: A Knowledge
Graph Perspective [4.746544835197422]
We aim to help guide machine learning and knowledge graph practitioners who are interested in applying new techniques to the drug discovery field.
We detail publicly available primary data sources containing information suitable for use in constructing various drug discovery focused knowledge graphs.
arXiv Detail & Related papers (2021-02-19T17:49:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.