論文の概要: Autonomous Sparse Mean-CVaR Portfolio Optimization
- arxiv url: http://arxiv.org/abs/2405.08047v1
- Date: Mon, 13 May 2024 15:16:22 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-15 16:06:44.624857
- Title: Autonomous Sparse Mean-CVaR Portfolio Optimization
- Title(参考訳): 自律スパース平均CVaRポートフォリオ最適化
- Authors: Yizun Lin, Yangyu Zhang, Zhao-Rong Lai, Cheng Li,
- Abstract要約: 本稿では,従来のモデルを任意の精度で近似できる,革新的な自律スパース平均CVaRポートフォリオモデルを提案する。
そこで我々は,近似交互線形化最小化アルゴリズムとネストした固定点近接アルゴリズム(どちらも収束)を併用してモデルを反復的に解く手法を提案する。
- 参考スコア(独自算出の注目度): 6.358973724565783
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The $\ell_0$-constrained mean-CVaR model poses a significant challenge due to its NP-hard nature, typically tackled through combinatorial methods characterized by high computational demands. From a markedly different perspective, we propose an innovative autonomous sparse mean-CVaR portfolio model, capable of approximating the original $\ell_0$-constrained mean-CVaR model with arbitrary accuracy. The core idea is to convert the $\ell_0$ constraint into an indicator function and subsequently handle it through a tailed approximation. We then propose a proximal alternating linearized minimization algorithm, coupled with a nested fixed-point proximity algorithm (both convergent), to iteratively solve the model. Autonomy in sparsity refers to retaining a significant portion of assets within the selected asset pool during adjustments in pool size. Consequently, our framework offers a theoretically guaranteed approximation of the $\ell_0$-constrained mean-CVaR model, improving computational efficiency while providing a robust asset selection scheme.
- Abstract(参考訳): $\ell_0$-constrained mean-CVaR モデルは NP-hard の性質から大きな課題を生んでいる。
そこで我々は,従来の$\ell_0$-constrained mean-CVaRモデルを任意の精度で近似できる,革新的な自律スパース平均CVaRポートフォリオモデルを提案する。
中心となる考え方は、$\ell_0$制約をインジケータ関数に変換し、その後尾尾近似によって処理することだ。
そこで我々は,近似交互線形化最小化アルゴリズムとネストした固定点近接アルゴリズム(どちらも収束)を併用して,モデルを反復的に解く手法を提案する。
スパーシティにおける自律性とは、プールサイズの調整中に選択された資産プール内の資産のかなりの部分を保持することを指す。
その結果、理論上は$\ell_0$-constrained mean-CVaRモデルの近似が保証され、ロバストな資産選択スキームが提供され、計算効率が向上する。
関連論文リスト
- Large-Scale Non-convex Stochastic Constrained Distributionally Robust Optimization [23.029511473335145]
本稿では、その性能のロバスト性を明確に評価した制約付きDROに焦点を当てる。
各$chi2$-divergencesポイント$におけるアルゴリズムの複雑さは、データセットサイズが独立しているため、大規模アプリケーションに適している。
論文 参考訳(メタデータ) (2024-04-01T15:56:58Z) - CoRMF: Criticality-Ordered Recurrent Mean Field Ising Solver [4.364088891019632]
我々は、RNNに基づく効率的なIsingモデル解法、Criticality-ordered Recurrent Mean Field (CoRMF)を提案する。
基礎となるIsingグラフの近似木構造を利用することで、新しく得られた臨界度順序は、変動平均場とRNNの統一を可能にする。
CoRFMはデータ/証拠のない自己学習方式でIsing問題を解き、RNNから直接サンプリングすることで推論タスクを実行することができる。
論文 参考訳(メタデータ) (2024-03-05T16:55:06Z) - Improving Sample Efficiency of Model-Free Algorithms for Zero-Sum Markov Games [66.2085181793014]
モデルフリーのステージベースQ-ラーニングアルゴリズムはモデルベースアルゴリズムと同じ$H$依存の最適性を享受できることを示す。
本アルゴリズムは,楽観的値関数と悲観的値関数のペアとして参照値関数を更新するキーとなる新しい設計を特徴とする。
論文 参考訳(メタデータ) (2023-08-17T08:34:58Z) - Consensus-Adaptive RANSAC [104.87576373187426]
本稿では,パラメータ空間の探索を学習する新しいRANSACフレームワークを提案する。
注意機構は、ポイント・ツー・モデル残差のバッチで動作し、軽量のワンステップ・トランスフォーマーで見いだされたコンセンサスを考慮するために、ポイント・ツー・モデル推定状態を更新する。
論文 参考訳(メタデータ) (2023-07-26T08:25:46Z) - KL-Entropy-Regularized RL with a Generative Model is Minimax Optimal [70.15267479220691]
モデル強化学習のサンプル複雑性を,生成的分散自由モデルを用いて検討・解析する。
我々の分析は、$varepsilon$が十分小さい場合、$varepsilon$-optimal Policyを見つけるのが、ほぼ最小の最適化であることを示している。
論文 参考訳(メタデータ) (2022-05-27T19:39:24Z) - Momentum Accelerates the Convergence of Stochastic AUPRC Maximization [80.8226518642952]
高精度リコール曲線(AUPRC)に基づく領域の最適化について検討し,不均衡なタスクに広く利用されている。
我々は、$O (1/epsilon4)$のより優れた反復による、$epsilon$定常解を見つけるための新しい運動量法を開発する。
また,O(1/epsilon4)$と同じ複雑さを持つ適応手法の新たなファミリを設計し,実際により高速な収束を享受する。
論文 参考訳(メタデータ) (2021-07-02T16:21:52Z) - Modeling the Second Player in Distributionally Robust Optimization [90.25995710696425]
我々は、最悪のケース分布を特徴付けるために神経生成モデルを使うことを議論する。
このアプローチは多くの実装と最適化の課題をもたらします。
提案されたアプローチは、同等のベースラインよりも堅牢なモデルを生み出す。
論文 参考訳(メタデータ) (2021-03-18T14:26:26Z) - Byzantine-Resilient Non-Convex Stochastic Gradient Descent [61.6382287971982]
敵対的レジリエントな分散最適化。
機械は独立して勾配を計算し 協力することができます
私達のアルゴリズムは新しい集中の技術およびサンプル複雑性に基づいています。
それは非常に実用的です:それはないときすべての前の方法の性能を改善します。
セッティングマシンがあります。
論文 参考訳(メタデータ) (2020-12-28T17:19:32Z) - Kidney Exchange with Inhomogeneous Edge Existence Uncertainty [33.17472228570093]
我々は一致したサイクルとチェーンパッキングの問題の最大化を目指しており、そこでは障害の端まで有向グラフ内の構造を識別することを目的としている。
ユナイテッド・フォー・シェアリング(SUNO)のデータに対する我々のアプローチは、SAAベースの手法と同じ重み付けでより良いパフォーマンスを提供する。
論文 参考訳(メタデータ) (2020-07-07T04:08:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。