論文の概要: Enhancing Distributional Robustness in Principal Component Analysis by Wasserstein Distances
- arxiv url: http://arxiv.org/abs/2503.02494v2
- Date: Fri, 11 Jul 2025 06:19:30 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-14 14:01:05.173722
- Title: Enhancing Distributional Robustness in Principal Component Analysis by Wasserstein Distances
- Title(参考訳): ワッサーシュタイン距離による主成分分析における分布ロバスト性向上
- Authors: Lei Wang, Xin Liu, Xiaojun Chen,
- Abstract要約: 主成分分析(PCA)の分布ロバスト最適化(DRO)モデルについて,基礎となる確率分布の不確実性を考慮する。
結果の定式化は非滑らかな制約付き min-max 最適化問題につながり、曖昧性集合はタイプ2$ワッサーシュタイン距離で分布の不確かさを捉える。
この明示的な特徴付けは、元の DRO モデルを、複雑な非滑らかな項を持つスティーフェル多様体上の最小化問題に同値に再構成する。
- 参考スコア(独自算出の注目度): 7.695578200868269
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We consider the distributionally robust optimization (DRO) model of principal component analysis (PCA) to account for uncertainty in the underlying probability distribution. The resulting formulation leads to a nonsmooth constrained min-max optimization problem, where the ambiguity set captures the distributional uncertainty by the type-$2$ Wasserstein distance. We prove that the inner maximization problem admits a closed-form optimal value. This explicit characterization equivalently reformulates the original DRO model into a minimization problem on the Stiefel manifold with intricate nonsmooth terms, a challenging formulation beyond the reach of existing algorithms. To address this issue, we devise an efficient smoothing manifold proximal gradient algorithm. Our analysis establishes Riemannian gradient consistency and global convergence of our algorithm to a stationary point of the nonsmooth minimization problem. We also provide the iteration complexity $O(\epsilon^{-3})$ of our algorithm to achieve an $\epsilon$-approximate stationary point. Finally, numerical experiments are conducted to validate the effectiveness and scalability of our algorithm, as well as to highlight the necessity and rationality of adopting the DRO model for PCA.
- Abstract(参考訳): 主成分分析(PCA)の分布ロバスト最適化(DRO)モデルについて,基礎となる確率分布の不確実性を考慮する。
結果の定式化は非滑らかな制約付き min-max 最適化問題につながり、曖昧性集合はタイプ2$ワッサーシュタイン距離で分布の不確かさを捉える。
内最大化問題は閉形式最適値を持つことを示す。
この明示的な特徴付けは、元の DRO モデルを、複雑な非滑らかな項を持つスティーフェル多様体上の最小化問題に同値に再構成し、これは既存のアルゴリズムの範囲を超えた挑戦的な定式化である。
この問題に対処するために、効率的な滑らかな多様体近位勾配アルゴリズムを考案する。
解析により,非滑らかな最小化問題の定常点へのリーマン勾配の整合性とアルゴリズムの大域収束が確立される。
我々はまた、このアルゴリズムの反復複雑性$O(\epsilon^{-3})$を提供し、$\epsilon$-approximate 定常点を達成する。
最後に,提案アルゴリズムの有効性と拡張性を検証し,PCAにDROモデルを適用する必要性と合理性を明らかにするための数値実験を行った。
関連論文リスト
- Stochastic Optimization with Optimal Importance Sampling [49.484190237840714]
本稿では,両者の時間的分離を必要とせずに,意思決定とIS分布を共同で更新する反復型アルゴリズムを提案する。
本手法は,IS分布系に対する目的的,軽度な仮定の凸性の下で,最小の変数分散を達成し,大域収束を保証する。
論文 参考訳(メタデータ) (2025-04-04T16:10:18Z) - Nested Stochastic Algorithm for Generalized Sinkhorn distance-Regularized Distributionally Robust Optimization [4.989068568135242]
分散ロバストシフト最適化(DRO)は、データ分散に対するロバストモデルのための強力な手法である。
本稿では、一般化近似関数によって不確実性をモデル化した正規化非DRO問題の解決を目的とする。
論文 参考訳(メタデータ) (2025-03-29T01:01:02Z) - Alternating minimization for square root principal component pursuit [2.449191760736501]
平方根主成分探索(SRPCP)問題を解くための効率的なアルゴリズムを開発した。
具体的には、各反復が閉形式最適解を楽しむサブプロブレムを含む、チューニング不要な交互最小化(AltMin)アルゴリズムを提案する。
我々は,AltMin法をさらに加速するために,核ノルムの変分定式化とブラー・モンティロ分解に基づく手法を導入する。
論文 参考訳(メタデータ) (2024-12-31T14:43:50Z) - Optimal Rates for Robust Stochastic Convex Optimization [12.620782629498812]
我々は、$epsilon$-contaminationモデルの下で、最小最適過剰リスク(対数因子まで)を達成する新しいアルゴリズムを開発した。
我々のアルゴリズムは、個々のサンプル関数のリプシッツ連続性や滑らかさを含む厳密な仮定を必要としない。
我々は、ロバストSCOのための厳密な情報理論の下限でアルゴリズム開発を補完する。
論文 参考訳(メタデータ) (2024-12-15T00:52:08Z) - A Sample Efficient Alternating Minimization-based Algorithm For Robust Phase Retrieval [56.67706781191521]
そこで本研究では,未知の信号の復元を課題とする,ロバストな位相探索問題を提案する。
提案するオラクルは、単純な勾配ステップと外れ値を用いて、計算学的スペクトル降下を回避している。
論文 参考訳(メタデータ) (2024-09-07T06:37:23Z) - Alternating Minimization Schemes for Computing Rate-Distortion-Perception Functions with $f$-Divergence Perception Constraints [10.564071872770146]
離散メモリレスソースに対するRDPF(Ralse-Distortion-Perception Function)の計算について検討した。
最適パラメトリック解を特徴付ける。
歪みと知覚制約について十分な条件を提供する。
論文 参考訳(メタデータ) (2024-08-27T12:50:12Z) - Large-Scale Non-convex Stochastic Constrained Distributionally Robust Optimization [23.029511473335145]
本稿では、その性能のロバスト性を明確に評価した制約付きDROに焦点を当てる。
各$chi2$-divergencesポイント$におけるアルゴリズムの複雑さは、データセットサイズが独立しているため、大規模アプリケーションに適している。
論文 参考訳(メタデータ) (2024-04-01T15:56:58Z) - A Near-Optimal Single-Loop Stochastic Algorithm for Convex Finite-Sum Coupled Compositional Optimization [53.14532968909759]
ALEXRと呼ばれる,効率的な単ループプリマル・デュアルブロック座標アルゴリズムを提案する。
本研究では, ALEXR の凸面および強凸面の収束速度を滑らか性および非滑らか性条件下で確立する。
CFCCO の ROC 曲線の下での GDRO および部分領域の実験結果から,提案アルゴリズムの有望な性能を示す。
論文 参考訳(メタデータ) (2023-12-04T19:00:07Z) - Hedging Complexity in Generalization via a Parametric Distributionally
Robust Optimization Framework [18.6306170209029]
経験的リスク最小化(ERM)と分散ロバスト最適化(DRO)は最適化問題の解法として一般的な手法である。
本稿では,パラメトリックな分布系列を用いて乱摂動分布を近似する簡単な手法を提案する。
この新たな誤差源は適切なDRO定式化によって制御可能であることを示す。
論文 参考訳(メタデータ) (2022-12-03T03:26:34Z) - Fully Stochastic Trust-Region Sequential Quadratic Programming for
Equality-Constrained Optimization Problems [62.83783246648714]
目的と決定論的等式制約による非線形最適化問題を解くために,逐次2次プログラミングアルゴリズム(TR-StoSQP)を提案する。
アルゴリズムは信頼領域半径を適応的に選択し、既存の直線探索StoSQP方式と比較して不確定なヘッセン行列を利用することができる。
論文 参考訳(メタデータ) (2022-11-29T05:52:17Z) - Stochastic Constrained DRO with a Complexity Independent of Sample Size [38.56406595022129]
クルバック分散制約DRO問題の解法として,非凸損失と凸損失の両方に適用可能なアルゴリズムを提案し,解析する。
非損失に対する$$$ilon定常解を見つけるのにほぼ最適な複雑さを確立し、広いアプリケーションに最適な解を求めるのに最適なバッチの複雑さを確立します。
論文 参考訳(メタデータ) (2022-10-11T19:11:19Z) - Exploring the Algorithm-Dependent Generalization of AUPRC Optimization
with List Stability [107.65337427333064]
AUPRC(Area Under the Precision-Recall Curve)の最適化は、機械学習にとって重要な問題である。
本研究では, AUPRC最適化の単依存一般化における最初の試行について述べる。
3つの画像検索データセットの実験は、我々のフレームワークの有効性と健全性に言及する。
論文 参考訳(メタデータ) (2022-09-27T09:06:37Z) - Adaptive Zeroth-Order Optimisation of Nonconvex Composite Objectives [1.7640556247739623]
ゼロ階エントロピー合成目的のためのアルゴリズムを解析し,次元依存性に着目した。
これは、ミラー降下法と推定類似関数を用いて、決定セットの低次元構造を利用して達成される。
勾配を改善するため、Rademacherに基づく古典的なサンプリング法を置き換え、ミニバッチ法が非ユークリ幾何学に対処することを示す。
論文 参考訳(メタデータ) (2022-08-09T07:36:25Z) - Non-convex Distributionally Robust Optimization: Non-asymptotic Analysis [16.499651513178012]
分散ロバスト最適化(DRO)は、分散シフトに対してロバストなモデルを学ぶために広く使われている手法である。
目的関数はおそらく非滑らかであり,正規化勾配降下を有するにもかかわらず,非漸近収束を保証する。
論文 参考訳(メタデータ) (2021-10-24T14:56:38Z) - Faster Algorithm and Sharper Analysis for Constrained Markov Decision
Process [56.55075925645864]
制約付き意思決定プロセス (CMDP) の問題点について検討し, エージェントは, 複数の制約を条件として, 期待される累積割引報酬を最大化することを目的とする。
新しいユーティリティ・デュアル凸法は、正規化ポリシー、双対正則化、ネステロフの勾配降下双対という3つの要素の新たな統合によって提案される。
これは、凸制約を受ける全ての複雑性最適化に対して、非凸CMDP問題が$mathcal O (1/epsilon)$の低い境界に達する最初の実演である。
論文 参考訳(メタデータ) (2021-10-20T02:57:21Z) - Outlier-Robust Sparse Estimation via Non-Convex Optimization [73.18654719887205]
空間的制約が存在する場合の高次元統計量と非破壊的最適化の関連について検討する。
これらの問題に対する新規で簡単な最適化法を開発した。
結論として、効率よくステーションに収束する一階法は、これらのタスクに対して効率的なアルゴリズムを導出する。
論文 参考訳(メタデータ) (2021-09-23T17:38:24Z) - Differentiable Annealed Importance Sampling and the Perils of Gradient
Noise [68.44523807580438]
Annealed importance sample (AIS) と関連するアルゴリズムは、限界推定のための非常に効果的なツールである。
差別性は、目的として限界確率を最適化する可能性を認めるため、望ましい性質である。
我々はメトロポリス・ハスティングスのステップを放棄して微分可能アルゴリズムを提案し、ミニバッチ計算をさらに解き放つ。
論文 参考訳(メタデータ) (2021-07-21T17:10:14Z) - Momentum Accelerates the Convergence of Stochastic AUPRC Maximization [80.8226518642952]
高精度リコール曲線(AUPRC)に基づく領域の最適化について検討し,不均衡なタスクに広く利用されている。
我々は、$O (1/epsilon4)$のより優れた反復による、$epsilon$定常解を見つけるための新しい運動量法を開発する。
また,O(1/epsilon4)$と同じ複雑さを持つ適応手法の新たなファミリを設計し,実際により高速な収束を享受する。
論文 参考訳(メタデータ) (2021-07-02T16:21:52Z) - Convergence of adaptive algorithms for weakly convex constrained
optimization [59.36386973876765]
モローエンベロープの勾配のノルムに対して$mathcaltilde O(t-1/4)$収束率を証明する。
我々の分析では、最小バッチサイズが1ドル、定数が1位と2位のモーメントパラメータが1ドル、そしておそらくスムーズな最適化ドメインで機能する。
論文 参考訳(メタデータ) (2020-06-11T17:43:19Z) - Distributionally Robust Bayesian Optimization [121.71766171427433]
そこで本研究では,ゼロ次雑音最適化のための分散ロバストなベイズ最適化アルゴリズム(DRBO)を提案する。
提案アルゴリズムは, 種々の設定において, 線形に頑健な後悔を確実に得る。
提案手法は, 実世界のベンチマークと実世界のベンチマークの両方において, 頑健な性能を示す。
論文 参考訳(メタデータ) (2020-02-20T22:04:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。