Comparative Study of Bitcoin Price Prediction
- URL: http://arxiv.org/abs/2405.08089v1
- Date: Mon, 13 May 2024 18:10:34 GMT
- Title: Comparative Study of Bitcoin Price Prediction
- Authors: Ali Mohammadjafari,
- Abstract summary: We employ five-fold cross-validation to enhance generalization and utilize L2 regularization to reduce overfitting and noise.
Our study demonstrates that the GRUs models offer better accuracy than LSTMs model for predicting Bitcoin's price.
- Score: 0.0
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Prediction of stock prices has been a crucial and challenging task, especially in the case of highly volatile digital currencies such as Bitcoin. This research examineS the potential of using neural network models, namely LSTMs and GRUs, to forecast Bitcoin's price movements. We employ five-fold cross-validation to enhance generalization and utilize L2 regularization to reduce overfitting and noise. Our study demonstrates that the GRUs models offer better accuracy than LSTMs model for predicting Bitcoin's price. Specifically, the GRU model has an MSE of 4.67, while the LSTM model has an MSE of 6.25 when compared to the actual prices in the test set data. This finding indicates that GRU models are better equipped to process sequential data with long-term dependencies, a characteristic of financial time series data such as Bitcoin prices. In summary, our results provide valuable insights into the potential of neural network models for accurate Bitcoin price prediction and emphasize the importance of employing appropriate regularization techniques to enhance model performance.
Related papers
- CryptoMamba: Leveraging State Space Models for Accurate Bitcoin Price Prediction [28.15955243872829]
We propose CryptoMamba, a novel Mamba-based State Space Model (SSM) architecture designed to capture long-range dependencies in financial time-series data.
Our experiments show that CryptoMamba not only provides more accurate predictions but also offers enhanced generalizability across different market conditions.
Our findings signal a huge advantage for SSMs in stock and cryptocurrency price forecasting tasks.
arXiv Detail & Related papers (2025-01-02T02:16:56Z) - Can Graph Neural Networks Expose Training Data Properties? An Efficient Risk Assessment Approach [37.84933964582224]
We study graph property inference attack to identify the risk of sensitive property information leakage from shared models.
Our method only requires training a small set of models on graphs, while generating a sufficient number of approximated shadow models for attacks.
arXiv Detail & Related papers (2024-11-06T04:44:51Z) - Indian Stock Market Prediction using Augmented Financial Intelligence ML [0.0]
This paper presents price prediction models using Machine Learning algorithms augmented with Superforecasters predictions.
The models are evaluated using the Mean Absolute Error to determine their predictive accuracy.
The main goal is to identify Superforecasters and track their predictions to anticipate unpredictable shifts or changes in stock prices.
arXiv Detail & Related papers (2024-07-02T12:58:50Z) - Review of deep learning models for crypto price prediction: implementation and evaluation [5.240745112593501]
We review the literature about deep learning for cryptocurrency price forecasting and evaluate novel deep learning models for cryptocurrency stock price prediction.
Our deep learning models include variants of long short-term memory (LSTM) recurrent neural networks, variants of convolutional neural networks (CNNs) and the Transformer model.
We also carry out volatility analysis on the four cryptocurrencies which reveals significant fluctuations in their prices throughout the COVID-19 pandemic.
arXiv Detail & Related papers (2024-05-19T03:15:27Z) - ResNLS: An Improved Model for Stock Price Forecasting [1.2039469573641217]
We introduce a hybrid model that improves stock price prediction by emphasizing the dependencies between adjacent stock prices.
In predicting the SSE Composite Index, our experiment reveals that when the closing price data for the previous 5 consecutive trading days is used as the input, the performance of the model (ResNLS-5) is optimal.
It also demonstrates at least a 20% improvement over the current state-of-the-art baselines.
arXiv Detail & Related papers (2023-12-02T03:55:37Z) - Towards Robust k-Nearest-Neighbor Machine Translation [72.9252395037097]
k-Nearest-Neighbor Machine Translation (kNN-MT) becomes an important research direction of NMT in recent years.
Its main idea is to retrieve useful key-value pairs from an additional datastore to modify translations without updating the NMT model.
The underlying retrieved noisy pairs will dramatically deteriorate the model performance.
We propose a confidence-enhanced kNN-MT model with robust training to alleviate the impact of noise.
arXiv Detail & Related papers (2022-10-17T07:43:39Z) - Bayesian Bilinear Neural Network for Predicting the Mid-price Dynamics
in Limit-Order Book Markets [84.90242084523565]
Traditional time-series econometric methods often appear incapable of capturing the true complexity of the multi-level interactions driving the price dynamics.
By adopting a state-of-the-art second-order optimization algorithm, we train a Bayesian bilinear neural network with temporal attention.
By addressing the use of predictive distributions to analyze errors and uncertainties associated with the estimated parameters and model forecasts, we thoroughly compare our Bayesian model with traditional ML alternatives.
arXiv Detail & Related papers (2022-03-07T18:59:54Z) - Robust Analysis of Stock Price Time Series Using CNN and LSTM-Based Deep
Learning Models [0.0]
We present a suite of deep learning-based regression models that yields a very high level of accuracy in stock price prediction.
We build four convolutional neural network (CNN) and five long- and short-term memory (LSTM)-based deep learning models for accurate forecasting of the future stock prices.
arXiv Detail & Related papers (2020-11-07T16:07:10Z) - Deep Stock Predictions [58.720142291102135]
We consider the design of a trading strategy that performs portfolio optimization using Long Short Term Memory (LSTM) neural networks.
We then customize the loss function used to train the LSTM to increase the profit earned.
We find the LSTM model with the customized loss function to have an improved performance in the training bot over a regressive baseline such as ARIMA.
arXiv Detail & Related papers (2020-06-08T23:37:47Z) - Short Term Blood Glucose Prediction based on Continuous Glucose
Monitoring Data [53.01543207478818]
This study explores the use of Continuous Glucose Monitoring (CGM) data as input for digital decision support tools.
We investigate how Recurrent Neural Networks (RNNs) can be used for Short Term Blood Glucose (STBG) prediction.
arXiv Detail & Related papers (2020-02-06T16:39:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.