論文の概要: Alignment Helps Make the Most of Multimodal Data
- arxiv url: http://arxiv.org/abs/2405.08454v3
- Date: Mon, 23 Jun 2025 13:51:06 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-24 19:06:36.166767
- Title: Alignment Helps Make the Most of Multimodal Data
- Title(参考訳): アライメントはマルチモーダルデータを活用するのに役立つ
- Authors: Christian Arnold, Andreas Küpfer,
- Abstract要約: 政治学者は一般的に、マルチモーダルなデータを整列しない。
アライメントの選択をガイドする決定ツリーを導入することで、我々のフレームワークはアライメントの未解決の可能性を強調します。
我々は、米国の大統領選挙キャンペーン広告におけるトナリティの予測と、ドイツの議会演説の横断的なクエリという2つの応用を通して、アライメントの分析価値を説明する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Political scientists increasingly analyze multimodal data. However, the effective analysis of such data requires aligning information across different modalities. In our paper, we demonstrate the significance of such alignment. Informed by a systematic review of 2,703 papers, we find that political scientists typically do not align their multimodal data. Introducing a decision tree that guides alignment choices, our framework highlights alignment's untapped potential and provides concrete advice in research design and modeling decisions. We illustrate alignment's analytical value through two applications: predicting tonality in U.S. presidential campaign ads and cross-modal querying of German parliamentary speeches to examine responses to the far-right AfD.
- Abstract(参考訳): 政治学者はますます多モーダルデータを分析している。
しかし、そのようなデータを効果的に分析するには、様々なモダリティにまたがる情報を整列する必要がある。
本稿では,このようなアライメントの重要性を実証する。
2,703件の論文の体系的なレビューによって、政治科学者は通常、そのマルチモーダルデータを整列しないことがわかった。
我々のフレームワークは、アライメントの選択をガイドする決定ツリーを導入し、アライメントの未解決の可能性を強調し、研究設計とモデリング決定に具体的なアドバイスを提供する。
我々は、米国の大統領選挙キャンペーン広告におけるトナリティの予測と、極右AfDに対する反応を調べるためのドイツの議会演説の横断的なクエリの2つの応用を通して、アライメントの分析価値を説明する。
関連論文リスト
- GridMind: A Multi-Agent NLP Framework for Unified, Cross-Modal NFL Data Insights [0.0]
本稿では,Retrieval-Augmented Generation (RAG) と大規模言語モデル (LLM) を通じて構造化,半構造化,非構造化データを統一するフレームワークであるGridMindを紹介する。
このアプローチはマルチモーダル表現学習の進化する分野と一致する。
論文 参考訳(メタデータ) (2025-03-24T18:33:36Z) - mmE5: Improving Multimodal Multilingual Embeddings via High-quality Synthetic Data [71.352883755806]
マルチモーダル埋め込みモデルは、テキストや画像などの様々なモダリティからデータを統一表現空間にマッピングする能力において、大きな注目を集めている。
しかし、ラベル付きマルチモーダルデータは、しばしば埋め込み性能を妨げる。
近年のアプローチでは、この問題に対処するためにデータ合成を活用しているが、合成データの質は依然として重大なボトルネックとなっている。
論文 参考訳(メタデータ) (2025-02-12T15:03:33Z) - An Information Criterion for Controlled Disentanglement of Multimodal Data [39.601584166020274]
マルチモーダル表現学習は、複数のモーダルに固有の情報を関連付けて分解しようとする。
Disentangled Self-Supervised Learning (DisentangledSSL)は、非角表現を学習するための新しい自己教師型アプローチである。
論文 参考訳(メタデータ) (2024-10-31T14:57:31Z) - Multimodal Graph Learning for Generative Tasks [89.44810441463652]
マルチモーダル学習は、複数のデータモダリティを組み合わせることで、モデルが利用できるデータの種類と複雑さを広げます。
本稿では,マルチモーダルグラフ学習(MMGL)を提案する。
論文 参考訳(メタデータ) (2023-10-11T13:25:03Z) - Read, Look or Listen? What's Needed for Solving a Multimodal Dataset [7.0430001782867]
マルチモーダル・データセットを解析するための2段階の手法を提案する。これは、人間のアノテーションの小さなシードを利用して、各マルチモーダル・インスタンスをその処理に必要なモダリティにマッピングする。
ビデオ質問応答データセットであるTVQAに我々のアプローチを適用し、ほとんどの質問が特定のモダリティに対して実質的な偏見を伴わずに単一のモダリティで答えられることを発見した。
我々は、MERLOT Reserveを分析し、テキストや音声よりも画像に基づく質問に苦しむが、聴覚話者の識別にも苦しむことを発見した。
論文 参考訳(メタデータ) (2023-07-06T08:02:45Z) - Multimodal Learning Without Labeled Multimodal Data: Guarantees and Applications [90.6849884683226]
ラベル付き単調データのみを用いた半教師付き環境における相互作用定量化の課題について検討する。
相互作用の正確な情報理論的定義を用いて、我々の重要な貢献は下界と上界の導出である。
本稿では、これらの理論結果を用いてマルチモーダルモデルの性能を推定し、データ収集をガイドし、様々なタスクに対して適切なマルチモーダルモデルを選択する方法について述べる。
論文 参考訳(メタデータ) (2023-06-07T15:44:53Z) - Collaborative Reasoning on Multi-Modal Semantic Graphs for
Video-Grounded Dialogue Generation [53.87485260058957]
本研究では,対話コンテキストと関連ビデオに基づいて応答を生成するビデオグラウンド・ダイアログ生成について検討する。
本課題の主な課題は,(1)事前学習言語モデル(PLM)に映像データを統合することの難しさである。
異なるモーダルの推論を協調的に行うマルチエージェント強化学習法を提案する。
論文 参考訳(メタデータ) (2022-10-22T14:45:29Z) - DIME: Fine-grained Interpretations of Multimodal Models via Disentangled
Local Explanations [119.1953397679783]
我々は,マルチモーダルモデルの解釈における最先端化に注力する。
提案手法であるDIMEは,マルチモーダルモデルの高精度かつきめ細かな解析を可能にする。
論文 参考訳(メタデータ) (2022-03-03T20:52:47Z) - Multimodal Image Synthesis and Editing: The Generative AI Era [131.9569600472503]
マルチモーダル画像合成と編集は 近年 ホットな研究テーマになっている。
近年のマルチモーダル画像合成・編集の進歩を包括的に理解している。
ベンチマークデータセットと評価指標と,それに対応する実験結果について述べる。
論文 参考訳(メタデータ) (2021-12-27T10:00:16Z) - MMGCN: Multimodal Fusion via Deep Graph Convolution Network for Emotion
Recognition in Conversation [32.15124603618625]
本研究では,マルチモーダル融合グラフ畳み込みネットワークMMGCNに基づく新しいモデルを提案する。
MMGCNは、マルチモーダル依存関係を効果的に活用できるだけでなく、話者間の依存性や話者内依存性をモデル化するために話者情報を利用することもできる。
提案したモデルを,IEMOCAPとMELDという2つの公開ベンチマークデータセット上で評価し,MMGCNの有効性を実証した。
論文 参考訳(メタデータ) (2021-07-14T15:37:02Z) - Video Sentiment Analysis with Bimodal Information-augmented Multi-Head
Attention [7.997124140597719]
本研究では,複数のモダリティの時系列データを含むビデオの感情分析に注目する。
重要な問題は、これらの異種データをどのように融合するかです。
バイモーダル相互作用に基づいて、より重要なバイモーダル特徴はより大きな重みが割り当てられる。
論文 参考訳(メタデータ) (2021-03-03T12:30:11Z) - Multimodal Routing: Improving Local and Global Interpretability of
Multimodal Language Analysis [103.69656907534456]
人間中心のタスクに強いパフォーマンスを持つ最近のマルチモーダル学習は、しばしばブラックボックスである。
本稿では,各入力サンプルに対して,入力モダリティと出力表現の重み付けを異なる方法で調整するマルチモーダルルーティングを提案する。
論文 参考訳(メタデータ) (2020-04-29T13:42:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。