論文の概要: A Distributed Approach to Autonomous Intersection Management via Multi-Agent Reinforcement Learning
- arxiv url: http://arxiv.org/abs/2405.08655v1
- Date: Tue, 14 May 2024 14:34:24 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-15 13:49:19.548337
- Title: A Distributed Approach to Autonomous Intersection Management via Multi-Agent Reinforcement Learning
- Title(参考訳): マルチエージェント強化学習による自律的区間管理への分散的アプローチ
- Authors: Matteo Cederle, Marco Fabris, Gian Antonio Susto,
- Abstract要約: 高度な補助システムに3Dサラウンドビュー技術を活用することで、自律走行車は集中制御装置を必要とせずに交差点のシナリオを正確にナビゲートできることを示す。
従来型のAIM技術に対する革新的な代替手段としてのアプローチを検証し,その結果の完全な有効性を確保する。
- 参考スコア(独自算出の注目度): 4.659033572014701
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Autonomous intersection management (AIM) poses significant challenges due to the intricate nature of real-world traffic scenarios and the need for a highly expensive centralised server in charge of simultaneously controlling all the vehicles. This study addresses such issues by proposing a novel distributed approach to AIM utilizing multi-agent reinforcement learning (MARL). We show that by leveraging the 3D surround view technology for advanced assistance systems, autonomous vehicles can accurately navigate intersection scenarios without needing any centralised controller. The contributions of this paper thus include a MARL-based algorithm for the autonomous management of a 4-way intersection and also the introduction of a new strategy called prioritised scenario replay for improved training efficacy. We validate our approach as an innovative alternative to conventional centralised AIM techniques, ensuring the full reproducibility of our results. Specifically, experiments conducted in virtual environments using the SMARTS platform highlight its superiority over benchmarks across various metrics.
- Abstract(参考訳): 自律的交差点管理(AIM)は、現実の交通シナリオの複雑な性質と、全車両を同時に制御する高コスト集中型サーバの必要性により、大きな課題を生んでいる。
本研究は,マルチエージェント強化学習(MARL)を利用したAIMへの新たな分散アプローチを提案することで,そのような課題に対処する。
高度な補助システムに3Dサラウンドビュー技術を活用することで、自律走行車は集中制御装置を必要とせずに交差点のシナリオを正確にナビゲートできることを示す。
そこで本研究では,4方向交差点の自律的管理のためのMARLに基づくアルゴリズムと,訓練効率を向上させるための優先シナリオリプレイと呼ばれる新しい戦略を導入する。
従来の集中型AIM技術に代わる革新的な代替手段として,我々のアプローチを検証し,その結果の完全な再現性を確保する。
具体的には、SMARTSプラットフォームを使用して仮想環境で実施された実験は、様々なメトリクスにわたるベンチマークよりも優れていることを強調している。
関連論文リスト
- A Systematic Study of Multi-Agent Deep Reinforcement Learning for Safe and Robust Autonomous Highway Ramp Entry [0.0]
本研究では,車体前方移動動作を制御するハイウェイランプ機能について検討し,車体が進入する高速道路交通の流れとの衝突を最小限に抑える。
我々はこの問題に対してゲーム理論的マルチエージェント(MA)アプローチを採用し、深層強化学習(DRL)に基づくコントローラの利用について検討する。
本稿では,2台以上の車両(エージェント)の相互作用を研究することで既存の作業を拡張し,交通量やエゴカーを付加して道路シーンを体系的に拡張する。
論文 参考訳(メタデータ) (2024-11-21T21:23:46Z) - Agent-Agnostic Centralized Training for Decentralized Multi-Agent Cooperative Driving [17.659812774579756]
本研究では,自律走行車における分散型協調運転ポリシーを学習する非対称アクター・批判モデルを提案する。
マスキングを用いたアテンションニューラルネットワークを用いることで,実世界の交通動態と部分観測可能性の効率よく管理できる。
論文 参考訳(メタデータ) (2024-03-18T16:13:02Z) - Machine Learning Insides OptVerse AI Solver: Design Principles and
Applications [74.67495900436728]
本稿では,Huawei CloudのOpsVerse AIソルバに機械学習(ML)技術を統合するための総合的研究について述べる。
本稿では,実世界の多面構造を反映した生成モデルを用いて,複雑なSATインスタンスとMILPインスタンスを生成する手法を紹介する。
本稿では,解解器性能を著しく向上させる,最先端パラメータチューニングアルゴリズムの導入について詳述する。
論文 参考訳(メタデータ) (2024-01-11T15:02:15Z) - Learning to Control Autonomous Fleets from Observation via Offline
Reinforcement Learning [3.9121134770873733]
オフライン強化学習のレンズによる自律移動システム制御の形式化を提案する。
オフラインRLは、経済的にクリティカルなシステムにおいて、RLベースのソリューションを適用する上で有望なパラダイムであることを示す。
論文 参考訳(メタデータ) (2023-02-28T18:31:07Z) - NeurIPS 2022 Competition: Driving SMARTS [60.948652154552136]
ドライビングSMARTSは、動的相互作用コンテキストにおける分散シフトに起因する問題に対処するために設計された定期的な競争である。
提案するコンペティションは,強化学習(RL)やオフライン学習など,方法論的に多様なソリューションをサポートする。
論文 参考訳(メタデータ) (2022-11-14T17:10:53Z) - Artificial Intelligence Empowered Multiple Access for Ultra Reliable and
Low Latency THz Wireless Networks [76.89730672544216]
テラヘルツ(THz)無線ネットワークは、第5世代(B5G)以上の時代を触媒すると予想されている。
いくつかのB5Gアプリケーションの超信頼性と低レイテンシ要求を満たすためには、新しいモビリティ管理アプローチが必要である。
本稿では、インテリジェントなユーザアソシエーションとリソースアロケーションを実現するとともに、フレキシブルで適応的なモビリティ管理を可能にする、全体論的MAC層アプローチを提案する。
論文 参考訳(メタデータ) (2022-08-17T03:00:24Z) - An Introduction to Multi-Agent Reinforcement Learning and Review of its
Application to Autonomous Mobility [1.496194593196997]
マルチエージェント強化学習(MARL、Multi-Agent Reinforcement Learning)は、複数のエージェントが相互に相互作用する最適な解を見つけることを目的とした研究分野である。
この研究は、自律移動の研究者にこの分野の概要を提供することを目的としている。
論文 参考訳(メタデータ) (2022-03-15T06:40:28Z) - Intelligent Autonomous Intersection Management [1.3534683694551497]
本稿では、強化学習に基づくマルチエージェントアーキテクチャと、マルチディスカウントQ-ラーニングを用いた新しいRLアルゴリズムを提案する。
実験結果から, RLをベースとしたマルチエージェント・ソリューションは, ほぼ最適性能を効率よく達成できることが示唆された。
論文 参考訳(メタデータ) (2022-02-09T01:45:12Z) - Transferable Deep Reinforcement Learning Framework for Autonomous
Vehicles with Joint Radar-Data Communications [69.24726496448713]
本稿では,AVの最適決定を支援するために,マルコフ決定プロセス(MDP)に基づくインテリジェントな最適化フレームワークを提案する。
そこで我々は,近年の深層強化学習技術を活用した効果的な学習アルゴリズムを開発し,AVの最適方針を見出す。
提案手法は,従来の深部強化学習手法と比較して,AVによる障害物ミス検出確率を最大67%削減することを示す。
論文 参考訳(メタデータ) (2021-05-28T08:45:37Z) - End-to-End Intersection Handling using Multi-Agent Deep Reinforcement
Learning [63.56464608571663]
交差点をナビゲートすることは、自動運転車にとって大きな課題の1つです。
本研究では,交通標識のみが提供された交差点をナビゲート可能なシステムの実装に着目する。
本研究では,時間ステップ毎に加速度と操舵角を予測するためのニューラルネットワークの訓練に用いる,モデルフリーの連続学習アルゴリズムを用いたマルチエージェントシステムを提案する。
論文 参考訳(メタデータ) (2021-04-28T07:54:40Z) - Reconfigurable Intelligent Surface Assisted Mobile Edge Computing with
Heterogeneous Learning Tasks [53.1636151439562]
モバイルエッジコンピューティング(MEC)は、AIアプリケーションに自然なプラットフォームを提供します。
再構成可能なインテリジェントサーフェス(RIS)の助けを借りて、MECで機械学習タスクを実行するインフラストラクチャを提示します。
具体的には,モバイルユーザの送信パワー,基地局のビームフォーミングベクトル,risの位相シフト行列を共同で最適化することにより,参加ユーザの学習誤差を最小化する。
論文 参考訳(メタデータ) (2020-12-25T07:08:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。