論文の概要: Weakly-supervised causal discovery based on fuzzy knowledge and complex data complementarity
- arxiv url: http://arxiv.org/abs/2405.08699v1
- Date: Tue, 14 May 2024 15:39:22 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-15 13:39:33.651123
- Title: Weakly-supervised causal discovery based on fuzzy knowledge and complex data complementarity
- Title(参考訳): ファジィ知識と複雑なデータの相補性に基づく弱教師付き因果発見
- Authors: Wenrui Li, Wei Zhang, Qinghao Zhang, Xuegong Zhang, Xiaowo Wang,
- Abstract要約: 本稿では,KEELというファジィ知識とデータ協調型因果発見手法を提案する。
KEELはファジィ因果知識スキーマを採用し、様々な種類のファジィ知識をカプセル化し、制約の弱さに対応する。
因果発見の一般化と堅牢性、特に高次元および小サンプルシナリオにおいて強化することができる。
- 参考スコア(独自算出の注目度): 4.637772575470497
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Causal discovery based on observational data is important for deciphering the causal mechanism behind complex systems. However, the effectiveness of existing causal discovery methods is limited due to inferior prior knowledge, domain inconsistencies, and the challenges of high-dimensional datasets with small sample sizes. To address this gap, we propose a novel weakly-supervised fuzzy knowledge and data co-driven causal discovery method named KEEL. KEEL adopts a fuzzy causal knowledge schema to encapsulate diverse types of fuzzy knowledge, and forms corresponding weakened constraints. This schema not only lessens the dependency on expertise but also allows various types of limited and error-prone fuzzy knowledge to guide causal discovery. It can enhance the generalization and robustness of causal discovery, especially in high-dimensional and small-sample scenarios. In addition, we integrate the extended linear causal model (ELCM) into KEEL for dealing with the multi-distribution and incomplete data. Extensive experiments with different datasets demonstrate the superiority of KEEL over several state-of-the-art methods in accuracy, robustness and computational efficiency. For causal discovery in real protein signal transduction processes, KEEL outperforms the benchmark method with limited data. In summary, KEEL is effective to tackle the causal discovery tasks with higher accuracy while alleviating the requirement for extensive domain expertise.
- Abstract(参考訳): 観測データに基づく因果発見は、複雑なシステムの背後にある因果メカニズムの解読に重要である。
しかし, 既存の因果探索手法の有効性は, 先行知識の劣り, ドメインの不整合, サンプルサイズが小さい高次元データセットの課題により制限されている。
そこで本研究では,このギャップに対処するために,弱教師付きファジィ知識とデータ共駆動因果探索手法KEELを提案する。
KEELはファジィ因果知識スキーマを採用し、様々な種類のファジィ知識をカプセル化し、制約の弱さに対応する。
このスキーマは専門知識への依存を減らすだけでなく、様々な種類の限定的でエラーを起こしやすいファジィ知識が因果発見を導くことを可能にする。
因果発見の一般化と堅牢性、特に高次元および小サンプルシナリオにおいて強化することができる。
さらに, 拡張線形因果モデル(ELCM)をKEELに統合し, マルチディストリビューションと不完全データを扱う。
異なるデータセットによる大規模な実験は、精度、堅牢性、計算効率のいくつかの最先端手法よりもKEELの方が優れていることを示した。
実際のタンパク質シグナル伝達過程における因果発見のために、KEELは限られたデータでベンチマーク法より優れている。
まとめると、KEELは広い分野の専門知識の要求を緩和しつつ、より高精度で因果発見タスクに取り組むのに効果的である。
関連論文リスト
- CAnDOIT: Causal Discovery with Observational and Interventional Data from Time-Series [4.008958683836471]
CAnDOITは、観測データと介入データの両方を用いて因果モデルを再構築する因果発見手法である。
因果解析における介入データの利用は、ロボット工学のような現実世界の応用には不可欠である。
CAnDOITのPython実装も開発され、GitHubで公開されている。
論文 参考訳(メタデータ) (2024-10-03T13:57:08Z) - Targeted Cause Discovery with Data-Driven Learning [66.86881771339145]
本稿では,観測結果から対象変数の因果変数を推定する機械学習手法を提案する。
我々は、シミュレートされたデータの教師あり学習を通じて因果関係を特定するために訓練されたニューラルネットワークを用いる。
大規模遺伝子制御ネットワークにおける因果関係の同定における本手法の有効性を実証した。
論文 参考訳(メタデータ) (2024-08-29T02:21:11Z) - Multi-modal Causal Structure Learning and Root Cause Analysis [67.67578590390907]
根本原因局所化のためのマルチモーダル因果構造学習手法であるMulanを提案する。
ログ選択言語モデルを利用してログ表現学習を行い、ログシーケンスを時系列データに変換する。
また、モダリティの信頼性を評価し、最終因果グラフを共同学習するための新しいキーパフォーマンスインジケータ対応アテンション機構も導入する。
論文 参考訳(メタデータ) (2024-02-04T05:50:38Z) - Causal disentanglement of multimodal data [1.589226862328831]
因果関係を持つ重要な特徴を発見するために,マルチモーダルデータと既知の物理を利用する因果表現学習アルゴリズム(causalPIMA)を導入する。
本研究は,完全教師なし環境下で重要な特徴を同時に発見しながら,解釈可能な因果構造を学習する能力を示すものである。
論文 参考訳(メタデータ) (2023-10-27T20:30:11Z) - CUTS+: High-dimensional Causal Discovery from Irregular Time-series [13.84185941100574]
本稿では,Granger-Causality-based causal discovery method CUTSを用いたCUTS+を提案する。
CUTS+は多種多様な不規則サンプリングによる高次元データにおける因果発見性能を大幅に向上することを示す。
論文 参考訳(メタデータ) (2023-05-10T04:20:36Z) - Evaluation of Induced Expert Knowledge in Causal Structure Learning by
NOTEARS [1.5469452301122175]
非パラメトリックNOTEARSモデルの定式化に使用される追加制約の形で、専門家の知識が因果関係に与える影響について検討する。
その結果, (i) NOTEARSモデルの誤りを正す知識は, 統計的に有意な改善をもたらすこと, (ii) アクティブエッジに対する制約は, 非アクティブエッジよりも因果発見に肯定的な影響を与えること, (iii) 意外なことに, (iii) 誘導された知識は, 平均的な不正確なアクティブエッジおよび/または非アクティブエッジに対して予想以上に正確でないことが判明した。
論文 参考訳(メタデータ) (2023-01-04T20:39:39Z) - Trust Your $\nabla$: Gradient-based Intervention Targeting for Causal Discovery [49.084423861263524]
本稿では,GIT を短縮した新しいグラディエント型インターベンションターゲティング手法を提案する。
GITは、介入獲得関数の信号を提供するために勾配に基づく因果探索フレームワークの勾配推定器を「信頼」する。
我々はシミュレーションおよび実世界のデータセットで広範な実験を行い、GITが競合するベースラインと同等に動作することを示す。
論文 参考訳(メタデータ) (2022-11-24T17:04:45Z) - BaCaDI: Bayesian Causal Discovery with Unknown Interventions [118.93754590721173]
BaCaDIは因果構造と介入の両方の潜在確率的表現の連続的な空間で機能する。
BaCaDIは、合成因果発見タスクとシミュレートされた遺伝子発現データの実験において、因果構造と介入ターゲットを識別する関連手法より優れている。
論文 参考訳(メタデータ) (2022-06-03T16:25:48Z) - Principled Knowledge Extrapolation with GANs [92.62635018136476]
我々は,知識外挿の新たな視点から,対実合成を研究する。
本稿では, 知識外挿問題に対処するために, クローズド形式判別器を用いた対角ゲームが利用可能であることを示す。
提案手法は,多くのシナリオにおいて,エレガントな理論的保証と優れた性能の両方を享受する。
論文 参考訳(メタデータ) (2022-05-21T08:39:42Z) - Learning Neural Causal Models with Active Interventions [83.44636110899742]
本稿では,データ生成プロセスの根底にある因果構造を素早く識別する能動的介入ターゲット機構を提案する。
本手法は,ランダムな介入ターゲティングと比較して,要求される対話回数を大幅に削減する。
シミュレーションデータから実世界のデータまで,複数のベンチマークにおいて優れた性能を示す。
論文 参考訳(メタデータ) (2021-09-06T13:10:37Z) - Causal Discovery from Incomplete Data: A Deep Learning Approach [21.289342482087267]
因果構造探索と因果構造探索を反復的に行うために, 因果学習を提案する。
ICLは、異なるデータメカニズムで最先端の手法より優れていることを示す。
論文 参考訳(メタデータ) (2020-01-15T14:28:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。