論文の概要: Feature Importance and Explainability in Quantum Machine Learning
- arxiv url: http://arxiv.org/abs/2405.08917v1
- Date: Tue, 14 May 2024 19:12:32 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-16 15:05:10.369046
- Title: Feature Importance and Explainability in Quantum Machine Learning
- Title(参考訳): 量子機械学習における特徴の重要性と説明可能性
- Authors: Luke Power, Krishnendu Guha,
- Abstract要約: 多くの機械学習(ML)モデルはブラックボックスモデルと呼ばれ、なぜ予測されるのかについて本当の洞察を与えていない。
本稿では、古典的MLモデルと比較して量子機械学習(QML)の特徴的重要性と説明可能性について考察する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Many Machine Learning (ML) models are referred to as black box models, providing no real insights into why a prediction is made. Feature importance and explainability are important for increasing transparency and trust in ML models, particularly in settings such as healthcare and finance. With quantum computing's unique capabilities, such as leveraging quantum mechanical phenomena like superposition, which can be combined with ML techniques to create the field of Quantum Machine Learning (QML), and such techniques may be applied to QML models. This article explores feature importance and explainability insights in QML compared to Classical ML models. Utilizing the widely recognized Iris dataset, classical ML algorithms such as SVM and Random Forests, are compared against hybrid quantum counterparts, implemented via IBM's Qiskit platform: the Variational Quantum Classifier (VQC) and Quantum Support Vector Classifier (QSVC). This article aims to provide a comparison of the insights generated in ML by employing permutation and leave one out feature importance methods, alongside ALE (Accumulated Local Effects) and SHAP (SHapley Additive exPlanations) explainers.
- Abstract(参考訳): 多くの機械学習(ML)モデルはブラックボックスモデルと呼ばれ、なぜ予測されるのかについて本当の洞察を与えていない。
特徴の重要性と説明可能性は、特に医療や金融といった設定において、MLモデルの透明性と信頼を高めるために重要である。
スーパーポジションのような量子力学的現象をML技術と組み合わせて量子機械学習(QML)の分野を作るなど、量子コンピューティングのユニークな能力により、そのような技術はQMLモデルに適用できる。
本稿では、古典的MLモデルと比較して、QMLの特徴的重要性と説明可能性について考察する。
広く知られているIrisデータセットを利用することで、SVMやRandom Forestsのような古典的なMLアルゴリズムは、IBMのQiskitプラットフォームで実装されたハイブリッド量子アルゴリズムと比較される。
本稿では,ALE (Accumulated Local Effects) やSHAP (SHapley Additive exPlanations) の解説とともに,順列化を用いてMLで生成された知見を比較し,特徴的重要な手法を1つ残すことを目的とする。
関連論文リスト
- GQHAN: A Grover-inspired Quantum Hard Attention Network [53.96779043113156]
GQHAM(Grover-inspired Quantum Hard Attention Mechanism)を提案する。
GQHANは、既存の量子ソフト自己保持機構の有効性を超越して、非微分可能性ハードルをかなり上回っている。
GQHANの提案は、将来の量子コンピュータが大規模データを処理する基盤を築き、量子コンピュータビジョンの開発を促進するものである。
論文 参考訳(メタデータ) (2024-01-25T11:11:16Z) - QKSAN: A Quantum Kernel Self-Attention Network [53.96779043113156]
量子カーネル法(Quantum Kernel Methods, QKM)のデータ表現能力とSAMの効率的な情報抽出能力を組み合わせた量子カーネル自己認識機構(Quantum Kernel Self-Attention Mechanism, QKSAM)を導入する。
量子カーネル自己保持ネットワーク(QKSAN)フレームワークは,DMP(Dederred Measurement Principle)と条件測定技術を巧みに組み込んだQKSAMに基づいて提案されている。
4つのQKSANサブモデルはPennyLaneとIBM Qiskitプラットフォームにデプロイされ、MNISTとFashion MNISTのバイナリ分類を実行する。
論文 参考訳(メタデータ) (2023-08-25T15:08:19Z) - Challenges and Opportunities in Quantum Machine Learning [2.5671549335906367]
量子機械学習(QML)は、特に量子データに対して、データ分析を加速する可能性がある。
ここでは、QMLの現在の方法と応用について概観する。
量子ニューラルネットワークと量子ディープラーニングに焦点をあてて、量子と古典的な機械学習の違いを強調します。
論文 参考訳(メタデータ) (2023-03-16T17:10:39Z) - Explainable Quantum Machine Learning [0.7046417074932257]
人工知能(AI)や特に機械学習(ML)の手法は、これまで以上に複雑になってきている。
並行して、量子機械学習(QML)が登場し、量子コンピューティングハードウェアの改善が進行中である。
論文 参考訳(メタデータ) (2023-01-22T15:17:12Z) - A didactic approach to quantum machine learning with a single qubit [68.8204255655161]
我々は、データ再ロード技術を用いて、単一のキュービットで学習するケースに焦点を当てる。
我々は、Qiskit量子コンピューティングSDKを用いて、おもちゃと現実世界のデータセットに異なる定式化を実装した。
論文 参考訳(メタデータ) (2022-11-23T18:25:32Z) - Recent Advances for Quantum Neural Networks in Generative Learning [98.88205308106778]
量子生成学習モデル(QGLM)は、古典的な学習モデルを上回る可能性がある。
機械学習の観点からQGLMの現状を概観する。
従来の機械学習タスクと量子物理学の両方におけるQGLMの潜在的な応用について論じる。
論文 参考訳(メタデータ) (2022-06-07T07:32:57Z) - Theory of Quantum Generative Learning Models with Maximum Mean
Discrepancy [67.02951777522547]
量子回路ボルンマシン(QCBM)と量子生成逆ネットワーク(QGAN)の学習可能性について検討する。
まず、QCBMの一般化能力を解析し、量子デバイスがターゲット分布に直接アクセスできる際の優位性を同定する。
次に、QGANの一般化誤差境界が、採用されるAnsatz、クォーディットの数、入力状態に依存することを示す。
論文 参考訳(メタデータ) (2022-05-10T08:05:59Z) - Study of Feature Importance for Quantum Machine Learning Models [0.0]
予測器の重要性は、古典的および量子機械学習(QML)におけるデータ前処理パイプラインの重要な部分である
この研究は、QMLモデルの特徴的重要性を探求し、彼らの古典的機械学習(CML)と対比した最初の研究である。
我々はQMLモデルを訓練し、実世界のデータセット上で古典的アルゴリズムから特徴的重要度を計算するハイブリッド量子古典的アーキテクチャを開発した。
論文 参考訳(メタデータ) (2022-02-18T15:21:47Z) - Quantum-tailored machine-learning characterization of a superconducting
qubit [50.591267188664666]
我々は,量子デバイスのダイナミクスを特徴付ける手法を開発し,デバイスパラメータを学習する。
このアプローチは、数値的に生成された実験データに基づいてトレーニングされた物理に依存しないリカレントニューラルネットワークより優れている。
このデモンストレーションは、ドメイン知識を活用することで、この特徴付けタスクの正確性と効率が向上することを示す。
論文 参考訳(メタデータ) (2021-06-24T15:58:57Z) - Structural risk minimization for quantum linear classifiers [0.0]
qml(quantum machine learning)は、量子コンピューティングの短期的"キラーアプリケーション"の典型的な候補の1つとして注目される。
明示的および暗黙的量子線形分類器と呼ばれる2つの密接に関連したQMLモデルの容量測定を研究する。
我々は,QMLモデルで使用される観測値のランクとフロベニウスノルムが,モデルのキャパシティを密接に制御していることを確認した。
論文 参考訳(メタデータ) (2021-05-12T10:39:55Z) - Classification with Quantum Machine Learning: A Survey [17.55390082094971]
我々は古典的機械学習(ML)と量子情報処理(QIP)を組み合わせることで、量子世界における量子機械学習(QML)と呼ばれる新しい分野を構築する。
本稿では,量子機械学習(QML)の最先端技術に関する包括的調査を提示し,要約する。
論文 参考訳(メタデータ) (2020-06-22T14:05:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。