論文の概要: Network Attack Traffic Detection With Hybrid Quantum-Enhanced Convolution Neural Network
- arxiv url: http://arxiv.org/abs/2504.20436v1
- Date: Tue, 29 Apr 2025 05:23:27 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-02 19:15:54.760362
- Title: Network Attack Traffic Detection With Hybrid Quantum-Enhanced Convolution Neural Network
- Title(参考訳): ハイブリッド量子強化畳み込みニューラルネットワークによるネットワークアタックトラフィック検出
- Authors: Zihao Wang, Kar Wai Fok, Vrizlynn L. L. Thing,
- Abstract要約: 量子機械学習(QML)は、量子コンピューティングと機械学習(ML)の機能を組み合わせる
本稿では、悪意のあるトラフィックを検出するために、量子畳み込みニューラルネットワーク(QCNN)の新たなハイブリッド構造の設計と提案に焦点を当てる。
- 参考スコア(独自算出の注目度): 9.466909402552844
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The emerging paradigm of Quantum Machine Learning (QML) combines features of quantum computing and machine learning (ML). QML enables the generation and recognition of statistical data patterns that classical computers and classical ML methods struggle to effectively execute. QML utilizes quantum systems to enhance algorithmic computation speed and real-time data processing capabilities, making it one of the most promising tools in the field of ML. Quantum superposition and entanglement features also hold the promise to potentially expand the potential feature representation capabilities of ML. Therefore, in this study, we explore how quantum computing affects ML and whether it can further improve the detection performance on network traffic detection, especially on unseen attacks which are types of malicious traffic that do not exist in the ML training dataset. Classical ML models often perform poorly in detecting these unseen attacks because they have not been trained on such traffic. Hence, this paper focuses on designing and proposing novel hybrid structures of Quantum Convolutional Neural Network (QCNN) to achieve the detection of malicious traffic. The detection performance, generalization, and robustness of the QML solutions are evaluated and compared with classical ML running on classical computers. The emphasis lies in assessing whether the QML-based malicious traffic detection outperforms classical solutions. Based on experiment results, QCNN models demonstrated superior performance compared to classical ML approaches on unseen attack detection.
- Abstract(参考訳): 量子機械学習(QML)の新たなパラダイムは、量子コンピューティングと機械学習(ML)の機能を組み合わせたものだ。
QMLは、古典的なコンピュータや古典的なMLメソッドが効果的に実行するのに苦労する統計データパターンの生成と認識を可能にする。
QMLは量子システムを利用してアルゴリズム計算速度とリアルタイムデータ処理能力を向上し、MLの分野で最も有望なツールの1つである。
量子重ね合わせと絡み合い機能は、MLの潜在的な特徴表現能力を拡大する可能性を秘めている。
そこで本研究では,量子コンピューティングがMLにどう影響するか,特にMLトレーニングデータセットに存在しない悪意のあるトラフィックのタイプである未知の攻撃に対して,ネットワークトラフィック検出における検出性能をさらに向上できるかを検討する。
古典的なMLモデルは、そのようなトラフィックで訓練されていないため、このような目に見えない攻撃を検出するのによく機能する。
そこで本研究では,悪意のあるトラフィックを検出するために,量子畳み込みニューラルネットワーク(QCNN)の新たなハイブリッド構造の設計と提案を行う。
QMLソリューションの検出性能,一般化,ロバスト性を評価し,古典的コンピュータ上で動作する古典的MLと比較した。
QMLベースの悪意のあるトラフィック検出が、古典的なソリューションよりも優れているかどうかを評価することに重点を置いている。
実験結果から,QCNNモデルでは,目立たない攻撃検出における古典的ML手法よりも優れた性能を示した。
関連論文リスト
- Learning to Measure Quantum Neural Networks [10.617463958884528]
本稿では,量子系の可観測性,特にエルミート行列学習性を実現する新しい手法を提案する。
本手法では,パラメータ化可観測関数を通常の量子回路パラメータとともに学習するエンド・ツー・エンドの微分可能学習フレームワークを特徴とする。
数値シミュレーションにより,提案手法は変動量子回路の観測値の同定が可能であり,その結果が得られた。
論文 参考訳(メタデータ) (2025-01-10T02:28:19Z) - Leveraging Pre-Trained Neural Networks to Enhance Machine Learning with Variational Quantum Circuits [48.33631905972908]
我々は、事前学習されたニューラルネットワークを用いて変分量子回路(VQC)を強化する革新的なアプローチを導入する。
この手法は近似誤差をキュービット数から効果的に分離し、制約条件の必要性を除去する。
我々の結果はヒトゲノム解析などの応用にまで拡張され、我々のアプローチの幅広い適用性を示している。
論文 参考訳(メタデータ) (2024-11-13T12:03:39Z) - QML-IDS: Quantum Machine Learning Intrusion Detection System [1.2016264781280588]
本稿では量子コンピューティングと古典コンピューティングを組み合わせた新しい侵入検知システムQML-IDSを提案する。
QML-IDSはQuantum Machine Learning(QML)手法を用いてネットワークパターンを分析し、攻撃活動を検出する。
我々は,QML-IDSが攻撃検出に有効であることを示し,バイナリおよびマルチクラス分類タスクで良好に動作することを示す。
論文 参考訳(メタデータ) (2024-10-07T13:07:41Z) - Drastic Circuit Depth Reductions with Preserved Adversarial Robustness
by Approximate Encoding for Quantum Machine Learning [0.5181797490530444]
本研究では, 変分, 遺伝的および行列積状態に基づくアルゴリズムを用いて, 符号化画像データを表す量子状態の効率的な作成法を実装した。
その結果、これらの手法は、標準状態準備実装よりも2桁も浅い回路を用いて、QMLに適したレベルにほぼ準備できることが判明した。
論文 参考訳(メタデータ) (2023-09-18T01:49:36Z) - Pre-training Tensor-Train Networks Facilitates Machine Learning with Variational Quantum Circuits [70.97518416003358]
変分量子回路(VQC)は、ノイズの多い中間スケール量子(NISQ)デバイス上での量子機械学習を約束する。
テンソルトレインネットワーク(TTN)はVQC表現と一般化を向上させることができるが、結果として得られるハイブリッドモデルであるTTN-VQCは、Polyak-Lojasiewicz(PL)条件による最適化の課題に直面している。
この課題を軽減するために,プレトレーニングTTNモデルとVQCを組み合わせたPre+TTN-VQCを導入する。
論文 参考訳(メタデータ) (2023-05-18T03:08:18Z) - Quantum Imitation Learning [74.15588381240795]
本稿では、量子優位性を利用してILを高速化する量子模倣学習(QIL)を提案する。
量子行動クローニング(Q-BC)と量子生成逆模倣学習(Q-GAIL)という2つのQILアルゴリズムを開発した。
実験結果から,Q-BCとQ-GAILの両者が,従来のものと同等の性能を達成できることが判明した。
論文 参考訳(メタデータ) (2023-04-04T12:47:35Z) - Problem-Dependent Power of Quantum Neural Networks on Multi-Class
Classification [83.20479832949069]
量子ニューラルネットワーク(QNN)は物理世界を理解する上で重要なツールとなっているが、その利点と限界は完全には理解されていない。
本稿では,多クラス分類タスクにおけるQCの問題依存力について検討する。
我々の研究はQNNの課題依存力に光を当て、その潜在的なメリットを評価するための実践的なツールを提供する。
論文 参考訳(メタデータ) (2022-12-29T10:46:40Z) - Reflection Equivariant Quantum Neural Networks for Enhanced Image
Classification [0.7232471205719458]
我々は、データに固有の対称性を明示的に尊重する新しい機械学習モデル、いわゆる幾何量子機械学習(GQML)を構築した。
これらのネットワークは、複雑な実世界の画像データセットに対する一般的なアンサーゼを一貫して、そして著しく向上させることができる。
論文 参考訳(メタデータ) (2022-12-01T04:10:26Z) - Benchmarking Adversarially Robust Quantum Machine Learning at Scale [20.76790069530767]
簡単な画像データセットと複雑な画像データセットの両方に対して厳密なトレーニングを行うことで、量子MLネットワークのロバスト性をベンチマークする。
以上の結果から,QVCは古典的敵意攻撃に対して顕著に強靭性を示した。
量子と古典的ネットワークの結果を組み合わせることで,新たな敵攻撃検出技術を提案する。
論文 参考訳(メタデータ) (2022-11-23T03:26:16Z) - Quantum Approximate Optimization Algorithm Based Maximum Likelihood
Detection [80.28858481461418]
量子技術の最近の進歩は、ノイズの多い中間スケール量子(NISQ)デバイスへの道を開く。
量子技術の最近の進歩は、ノイズの多い中間スケール量子(NISQ)デバイスへの道を開く。
論文 参考訳(メタデータ) (2021-07-11T10:56:24Z) - Quantum-tailored machine-learning characterization of a superconducting
qubit [50.591267188664666]
我々は,量子デバイスのダイナミクスを特徴付ける手法を開発し,デバイスパラメータを学習する。
このアプローチは、数値的に生成された実験データに基づいてトレーニングされた物理に依存しないリカレントニューラルネットワークより優れている。
このデモンストレーションは、ドメイン知識を活用することで、この特徴付けタスクの正確性と効率が向上することを示す。
論文 参考訳(メタデータ) (2021-06-24T15:58:57Z) - On the learnability of quantum neural networks [132.1981461292324]
本稿では,量子ニューラルネットワーク(QNN)の学習可能性について考察する。
また,概念をQNNで効率的に学習することができれば,ゲートノイズがあってもQNNで効果的に学習できることを示す。
論文 参考訳(メタデータ) (2020-07-24T06:34:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。