論文の概要: VeriOpt: PPA-Aware High-Quality Verilog Generation via Multi-Role LLMs
- arxiv url: http://arxiv.org/abs/2507.14776v1
- Date: Sun, 20 Jul 2025 00:28:55 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-22 20:51:32.046199
- Title: VeriOpt: PPA-Aware High-Quality Verilog Generation via Multi-Role LLMs
- Title(参考訳): VeriOpt: マルチロールLCMによるPPA対応高品質ベリログ生成
- Authors: Kimia Tasnia, Alexander Garcia, Tasnuva Farheen, Sazadur Rahman,
- Abstract要約: VeriOptは、ロールベースのプロンプトとPPA対応最適化を利用して、高品質で合成可能なVerilogを生成する新しいフレームワークである。
私たちの研究は、正しさと品質の重大なギャップに対処することで、最先端のAI駆動型ハードウェア設計を前進させます。
- 参考スコア(独自算出の注目度): 41.94295877935867
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The rapid adoption of large language models(LLMs) in hardware design has primarily focused on generating functionally correct Verilog code, overlooking critical Power Performance-Area(PPA) metrics essential for industrial-grade designs. To bridge this gap, we propose VeriOpt, a novel framework that leverages role-based prompting and PPA-aware optimization to enable LLMs to produce high-quality, synthesizable Verilog. VeriOpt structures LLM interactions into specialized roles (e.g., Planner, Programmer, Reviewer, Evaluator) to emulate human design workflows, while integrating PPA constraints directly into the prompting pipeline. By combining multi-modal feedback (e.g., synthesis reports, timing diagrams) with PPA aware prompting, VeriOpt achieves PPA-efficient code generation without sacrificing functional correctness. Experimental results demonstrate up to 88% reduction in power, 76% reduction in area and 73% improvement in timing closure compared to baseline LLM-generated RTL, validated using industry standard EDA tools. At the same time achieves 86% success rate in functionality evaluation. Our work advances the state-of-the-art AI-driven hardware design by addressing the critical gap between correctness and quality, paving the way for reliable LLM adoption in production workflows.
- Abstract(参考訳): ハードウェア設計における大規模言語モデル(LLM)の急速な採用は、産業レベルの設計に不可欠なPPA(Power Performance-Area)メトリクスを見越して、機能的に正しいVerilogコードを生成することに重点を置いている。
このギャップを埋めるために、ロールベースのプロンプトとPPA対応最適化を活用して、LLMが高品質で合成可能なVerilogを作成できる新しいフレームワークであるVeriOptを提案する。
VeriOptは、PPA制約を直接プロンプトパイプラインに統合しながら、人間の設計ワークフローをエミュレートするために、LSMインタラクションを特別な役割(プランナー、プログラマ、レビュア、評価器など)に構成する。
VeriOptはマルチモーダルフィードバック(例えば、合成レポート、タイミング図)とPPA認識のプロンプトを組み合わせることで、機能的正しさを犠牲にすることなく、PPA効率の良いコード生成を実現している。
その結果, 業界標準のEDAツールを用いて検証した結果, 88%の消費電力削減, 76%の面積削減, 73%の時間閉鎖効果が得られた。
同時に、機能評価で86%の成功率を達成した。
私たちの研究は、正確性と品質の重大なギャップに対処し、運用ワークフローにおける信頼性の高いLLM採用の道を開くことで、最先端のAI駆動ハードウェア設計を前進させます。
関連論文リスト
- ChipSeek-R1: Generating Human-Surpassing RTL with LLM via Hierarchical Reward-Driven Reinforcement Learning [32.11086992218369]
ChipSeek-R1は、大規模な言語モデルのための階層的な報酬駆動強化学習フレームワークである。
関数的正当性とPPA最適化の両方のRTLコードを生成する。
RTLLMのベンチマークでは、ChipSeek-R1はオリジナルの人間の書いたコードのPPAメトリクスを超える27のRTL設計を作成した。
論文 参考訳(メタデータ) (2025-07-07T08:08:20Z) - PRO-V: An Efficient Program Generation Multi-Agent System for Automatic RTL Verification [6.983135183126461]
Pro-Vは、堅牢なRTL検証のためのプログラム生成マルチエージェントシステムである。
生成したテストベンチの正しさを高めるため、効率的なn個の反復サンプリング戦略が組み込まれている。
Pro-Vは、黄金のRTL実装では87.17%、RTL変異では76.28%の精度で検証されている。
論文 参考訳(メタデータ) (2025-06-13T20:06:34Z) - Training Language Models to Generate Quality Code with Program Analysis Feedback [66.0854002147103]
大規模言語モデル(LLM)によるコード生成は、ますます本番環境で採用されているが、コード品質の保証には失敗している。
実運用品質のコードを生成するためにLLMにインセンティブを与える強化学習フレームワークであるREALを提案する。
論文 参考訳(メタデータ) (2025-05-28T17:57:47Z) - TuRTLe: A Unified Evaluation of LLMs for RTL Generation [0.6010802600885173]
本研究では,主要なRTL生成タスク間でLLMを評価するための統合評価フレームワークTuRTLeを提案する。
オープンLLMの多様なセットをベンチマークし、EDA固有のタスクの長所と短所を分析します。
以上の結果から,DeepSeek R1のような推論モデルの方が,複数の評価基準で常に優れていたことが示唆された。
論文 参考訳(メタデータ) (2025-03-31T07:43:12Z) - LLM2: Let Large Language Models Harness System 2 Reasoning [65.89293674479907]
大規模言語モデル(LLM)は、無数のタスクにまたがって印象的な機能を示してきたが、時には望ましくない出力が得られる。
本稿では LLM とプロセスベースの検証器を組み合わせた新しいフレームワーク LLM2 を紹介する。
LLMs2は妥当な候補を生成するのに責任を持ち、検証者は望ましい出力と望ましくない出力を区別するためにタイムリーなプロセスベースのフィードバックを提供する。
論文 参考訳(メタデータ) (2024-12-29T06:32:36Z) - EDA-Aware RTL Generation with Large Language Models [0.7831852829409273]
LLM(Large Language Models)は、RTLコードを生成するために人気が高まっている。
ゼロショット設定でエラーのないRTLコードを生成することは、最先端のLLMでも非常に難しい。
本稿では,構文と機能的エラーの反復的修正によるRTLコード生成の高速化を目的とした,自己検証型LLM非依存型エージェントフレームワークであるAIvril2を紹介する。
論文 参考訳(メタデータ) (2024-11-21T00:37:51Z) - PerfCodeGen: Improving Performance of LLM Generated Code with Execution Feedback [78.89596149768458]
大規模言語モデル(LLM)は、ソフトウェア開発タスクを支援するために広く採用されている。
LLM生成コードの性能を向上させるトレーニングフリーフレームワークPerfCodeGenを提案する。
論文 参考訳(メタデータ) (2024-11-18T06:22:38Z) - VinePPO: Refining Credit Assignment in RL Training of LLMs [66.80143024475635]
我々は,言語環境の柔軟性を利用してモンテカルロをベースとした推定値を計算する,簡単なアプローチであるVinePPOを提案する。
本手法は,MATHおよびGSM8Kデータセット間のPPOおよび他のベースラインをウォールクロック時間以下で連続的に上回る。
論文 参考訳(メタデータ) (2024-10-02T15:49:30Z) - AIvril: AI-Driven RTL Generation With Verification In-The-Loop [0.7831852829409273]
LLM(Large Language Models)は、複雑な自然言語処理タスクを実行できる計算モデルである。
本稿では,RTL対応LLMの精度と信頼性を高めるためのフレームワークであるAIvrilを紹介する。
論文 参考訳(メタデータ) (2024-09-03T15:07:11Z) - Q*: Improving Multi-step Reasoning for LLMs with Deliberative Planning [53.6472920229013]
大規模言語モデル(LLM)は多くの自然言語タスクにおいて印象的な能力を示している。
LLMは多段階推論を行う際にエラー、幻覚、矛盾する文を生成する傾向がある。
本稿では,LLMの復号化過程を検討計画で導くためのフレームワークであるQ*を紹介する。
論文 参考訳(メタデータ) (2024-06-20T13:08:09Z) - Towards Efficient LLM Grounding for Embodied Multi-Agent Collaboration [70.09561665520043]
本稿では,多エージェント協調のための新しいフレームワークを提案する。これは,効率的な自己調整のための強化アドバンテージフィードバック(Reinforced Advantage feedback, ReAd)を導入する。
強化学習における重み付き回帰を多エージェントシステムに拡張して理論的解析を行う。
Over-AIと難解なRoCoBenchの実験は、ReAdが成功率のベースラインを超え、エージェントの相互作用ステップを著しく減少させることを示している。
論文 参考訳(メタデータ) (2024-05-23T08:33:19Z) - SOEN-101: Code Generation by Emulating Software Process Models Using Large Language Model Agents [50.82665351100067]
FlowGenは、複数のLarge Language Model (LLM)エージェントに基づいたソフトウェアプロセスモデルをエミュレートするコード生成フレームワークである。
FlowGenScrumをHumanEval、HumanEval-ET、MBPP、MBPP-ETの4つのベンチマークで評価した。
論文 参考訳(メタデータ) (2024-03-23T14:04:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。