論文の概要: Robust Approximate Sampling via Stochastic Gradient Barker Dynamics
- arxiv url: http://arxiv.org/abs/2405.08999v1
- Date: Tue, 14 May 2024 23:47:02 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-16 14:45:30.677613
- Title: Robust Approximate Sampling via Stochastic Gradient Barker Dynamics
- Title(参考訳): 確率勾配バーカーダイナミクスによるロバスト近似サンプリング
- Authors: Lorenzo Mauri, Giacomo Zanella,
- Abstract要約: 本稿では,Langevin に基づくサンプリングアルゴリズムの頑健な代替である Barker gradient dynamics (SGBD) アルゴリズムを勾配フレームワークに導入する。
本稿では,バーカー遷移機構に対する勾配の影響を特徴付けるとともに,勾配雑音による誤差を除去するバイアス補正版を開発する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Stochastic Gradient (SG) Markov Chain Monte Carlo algorithms (MCMC) are popular algorithms for Bayesian sampling in the presence of large datasets. However, they come with little theoretical guarantees and assessing their empirical performances is non-trivial. In such context, it is crucial to develop algorithms that are robust to the choice of hyperparameters and to gradients heterogeneity since, in practice, both the choice of step-size and behaviour of target gradients induce hard-to-control biases in the invariant distribution. In this work we introduce the stochastic gradient Barker dynamics (SGBD) algorithm, extending the recently developed Barker MCMC scheme, a robust alternative to Langevin-based sampling algorithms, to the stochastic gradient framework. We characterize the impact of stochastic gradients on the Barker transition mechanism and develop a bias-corrected version that, under suitable assumptions, eliminates the error due to the gradient noise in the proposal. We illustrate the performance on a number of high-dimensional examples, showing that SGBD is more robust to hyperparameter tuning and to irregular behavior of the target gradients compared to the popular stochastic gradient Langevin dynamics algorithm.
- Abstract(参考訳): Stochastic Gradient (SG) Markov Chain Monte Carlo Algorithm (MCMC) は、大規模なデータセットの存在下でベイズサンプリングの一般的なアルゴリズムである。
しかし、理論上の保証はほとんどなく、経験的なパフォーマンスを評価することは簡単ではない。
このような文脈では、過度パラメータの選択に頑健なアルゴリズムと不均一性勾配を開発することが重要である。
本研究では,最近開発されたLangevinベースのサンプリングアルゴリズムの頑健な代替であるBarker MCMCスキームを確率勾配フレームワークに拡張した確率勾配バーカー力学(SGBD)アルゴリズムを紹介する。
確率勾配がバーカー遷移機構に与える影響を特徴付けるとともに、適切な仮定の下で、提案手法の勾配雑音による誤差を除去するバイアス補正版を開発する。
本稿では,SGBD が高パラメータチューニングや目標勾配の不規則な挙動に対して,確率勾配ランゲヴィン力学アルゴリズムよりも頑健であることを示す。
関連論文リスト
- Flattened one-bit stochastic gradient descent: compressed distributed optimization with controlled variance [55.01966743652196]
パラメータ・サーバ・フレームワークにおける圧縮勾配通信を用いた分散勾配降下(SGD)のための新しいアルゴリズムを提案する。
平坦な1ビット勾配勾配勾配法(FO-SGD)は2つの単純なアルゴリズムの考え方に依存している。
論文 参考訳(メタデータ) (2024-05-17T21:17:27Z) - Model-Based Reparameterization Policy Gradient Methods: Theory and
Practical Algorithms [88.74308282658133]
Reization (RP) Policy Gradient Methods (PGM) は、ロボット工学やコンピュータグラフィックスにおける連続的な制御タスクに広く採用されている。
近年の研究では、長期強化学習問題に適用した場合、モデルベースRP PGMはカオス的かつ非滑らかな最適化環境を経験する可能性があることが示されている。
本稿では,長期モデルアンロールによる爆発的分散問題を緩和するスペクトル正規化法を提案する。
論文 参考訳(メタデータ) (2023-10-30T18:43:21Z) - Differentiable Annealed Importance Sampling and the Perils of Gradient
Noise [68.44523807580438]
Annealed importance sample (AIS) と関連するアルゴリズムは、限界推定のための非常に効果的なツールである。
差別性は、目的として限界確率を最適化する可能性を認めるため、望ましい性質である。
我々はメトロポリス・ハスティングスのステップを放棄して微分可能アルゴリズムを提案し、ミニバッチ計算をさらに解き放つ。
論文 参考訳(メタデータ) (2021-07-21T17:10:14Z) - A Contour Stochastic Gradient Langevin Dynamics Algorithm for
Simulations of Multi-modal Distributions [17.14287157979558]
ビッグデータ統計学の学習のための適応重み付き勾配ランゲヴィン力学(SGLD)を提案する。
提案アルゴリズムは、CIFAR100を含むベンチマークデータセットで検証される。
論文 参考訳(メタデータ) (2020-10-19T19:20:47Z) - Stochastic Gradient Langevin Dynamics Algorithms with Adaptive Drifts [8.36840154574354]
そこで我々は, ドリフト関数を偏り, サドル点からの脱出を促進させ, バイアスを過去のサンプルの勾配に応じて適応的に調整する, 適応的勾配勾配連鎖モンテカルロ(SGMCMC)アルゴリズムを提案する。
本稿では,提案アルゴリズムが既存のSGMCMCアルゴリズムよりも優れていることを示す。
論文 参考訳(メタデータ) (2020-09-20T22:03:39Z) - Bayesian Sparse learning with preconditioned stochastic gradient MCMC
and its applications [5.660384137948734]
提案アルゴリズムは, 温和な条件下で, 制御可能なバイアスで正しい分布に収束する。
提案アルゴリズムは, 温和な条件下で, 制御可能なバイアスで正しい分布に収束可能であることを示す。
論文 参考訳(メタデータ) (2020-06-29T20:57:20Z) - Dynamical mean-field theory for stochastic gradient descent in Gaussian
mixture classification [25.898873960635534]
高次元景観を分類する単一層ニューラルネットワークにおける勾配降下(SGD)の閉学習ダイナミクスを解析する。
連続次元勾配流に拡張可能なプロトタイププロセスを定義する。
フルバッチ限界では、標準勾配流を回復する。
論文 参考訳(メタデータ) (2020-06-10T22:49:41Z) - Stochastic Optimization with Heavy-Tailed Noise via Accelerated Gradient
Clipping [69.9674326582747]
そこで本研究では,重み付き分散雑音を用いたスムーズな凸最適化のための,クリップ付きSSTMと呼ばれる新しい1次高速化手法を提案する。
この場合、最先端の結果を上回る新たな複雑さが証明される。
本研究は,SGDにおいて,ノイズに対する光細かな仮定を伴わずにクリッピングを施した最初の非自明な高確率複雑性境界を導出した。
論文 参考訳(メタデータ) (2020-05-21T17:05:27Z) - Improving Sampling Accuracy of Stochastic Gradient MCMC Methods via
Non-uniform Subsampling of Gradients [54.90670513852325]
サンプリング精度を向上させるための一様でないサブサンプリング手法を提案する。
EWSGは、一様勾配MCMC法がバッチ勾配MCMC法の統計的挙動を模倣するように設計されている。
EWSGの実践的な実装では、データインデックス上のMetropolis-Hastingsチェーンを介して、一様でないサブサンプリングを効率的に行う。
論文 参考訳(メタデータ) (2020-02-20T18:56:18Z) - Stochastic Approximate Gradient Descent via the Langevin Algorithm [11.36635610546803]
本研究では,不偏勾配が自明に得られない場合の勾配勾配の代替として,近似勾配勾配(SAGD)を導入する。
SAGDは,予測最大化アルゴリズムや変分オートエンコーダといった,一般的な統計的および機械学習問題において,実験的によく機能することを示す。
論文 参考訳(メタデータ) (2020-02-13T14:29:21Z) - Towards Better Understanding of Adaptive Gradient Algorithms in
Generative Adversarial Nets [71.05306664267832]
適応アルゴリズムは勾配の歴史を用いて勾配を更新し、深層ニューラルネットワークのトレーニングにおいてユビキタスである。
本稿では,非コンケーブ最小値問題に対するOptimisticOAアルゴリズムの変種を解析する。
実験の結果,適応型GAN非適応勾配アルゴリズムは経験的に観測可能であることがわかった。
論文 参考訳(メタデータ) (2019-12-26T22:10:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。