Improving Sequential Market Clearing via Value-oriented Renewable Energy Forecasting
- URL: http://arxiv.org/abs/2405.09004v1
- Date: Wed, 15 May 2024 00:04:08 GMT
- Title: Improving Sequential Market Clearing via Value-oriented Renewable Energy Forecasting
- Authors: Yufan Zhang, Honglin Wen, Yuexin Bian, Yuanyuan Shi,
- Abstract summary: Large penetration of renewable energy sources (RESs) brings huge uncertainty into the electricity markets.
We propose a value-oriented forecasting approach, which tactically determines the RESs generation that enters the day-ahead market.
- Score: 3.0665531066360066
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large penetration of renewable energy sources (RESs) brings huge uncertainty into the electricity markets. While existing deterministic market clearing fails to accommodate the uncertainty, the recently proposed stochastic market clearing struggles to achieve desirable market properties. In this work, we propose a value-oriented forecasting approach, which tactically determines the RESs generation that enters the day-ahead market. With such a forecast, the existing deterministic market clearing framework can be maintained, and the day-ahead and real-time overall operation cost is reduced. At the training phase, the forecast model parameters are estimated to minimize expected day-ahead and real-time overall operation costs, instead of minimizing forecast errors in a statistical sense. Theoretically, we derive the exact form of the loss function for training the forecast model that aligns with such a goal. For market clearing modeled by linear programs, this loss function is a piecewise linear function. Additionally, we derive the analytical gradient of the loss function with respect to the forecast, which inspires an efficient training strategy. A numerical study shows our forecasts can bring significant benefits of the overall cost reduction to deterministic market clearing, compared to quality-oriented forecasting approach.
Related papers
- RAGIC: Risk-Aware Generative Adversarial Model for Stock Interval
Construction [4.059196561157555]
Many existing prediction approaches focus on single-point predictions, lacking the depth needed for effective decision-making.
We propose RAGIC, which introduces sequence generation for stock interval prediction to quantify uncertainty more effectively.
RAGIC's generator includes a risk module, capturing the risk perception of informed investors, and a temporal module, accounting for historical price trends and seasonality.
arXiv Detail & Related papers (2024-02-16T15:34:07Z) - Short-term Volatility Estimation for High Frequency Trades using
Gaussian processes (GPs) [0.0]
It is crucial to make necessary and regular short and long-term stock price volatility forecasts for the safety and economics of investors returns.
This paper implements a combination of numeric and probabilistic models for short-term volatility and return forecasting for high-frequency trades.
arXiv Detail & Related papers (2023-11-18T02:03:48Z) - Diffusion Variational Autoencoder for Tackling Stochasticity in
Multi-Step Regression Stock Price Prediction [54.21695754082441]
Multi-step stock price prediction over a long-term horizon is crucial for forecasting its volatility.
Current solutions to multi-step stock price prediction are mostly designed for single-step, classification-based predictions.
We combine a deep hierarchical variational-autoencoder (VAE) and diffusion probabilistic techniques to do seq2seq stock prediction.
Our model is shown to outperform state-of-the-art solutions in terms of its prediction accuracy and variance.
arXiv Detail & Related papers (2023-08-18T16:21:15Z) - HireVAE: An Online and Adaptive Factor Model Based on Hierarchical and
Regime-Switch VAE [113.47287249524008]
It is still an open question to build a factor model that can conduct stock prediction in an online and adaptive setting.
We propose the first deep learning based online and adaptive factor model, HireVAE, at the core of which is a hierarchical latent space that embeds the relationship between the market situation and stock-wise latent factors.
Across four commonly used real stock market benchmarks, the proposed HireVAE demonstrate superior performance in terms of active returns over previous methods.
arXiv Detail & Related papers (2023-06-05T12:58:13Z) - Probabilistic forecasting of German electricity imbalance prices [0.0]
The exponential growth of renewable energy capacity has brought much uncertainty to electricity prices and to electricity generation.
For an energy trader participating in both markets, the forecasting of imbalance prices is of particular interest.
The forecasting is performed 30 minutes before the delivery, so that the trader might still choose the trading place.
arXiv Detail & Related papers (2022-05-23T16:32:20Z) - Bayesian Bilinear Neural Network for Predicting the Mid-price Dynamics
in Limit-Order Book Markets [84.90242084523565]
Traditional time-series econometric methods often appear incapable of capturing the true complexity of the multi-level interactions driving the price dynamics.
By adopting a state-of-the-art second-order optimization algorithm, we train a Bayesian bilinear neural network with temporal attention.
By addressing the use of predictive distributions to analyze errors and uncertainties associated with the estimated parameters and model forecasts, we thoroughly compare our Bayesian model with traditional ML alternatives.
arXiv Detail & Related papers (2022-03-07T18:59:54Z) - Stock Price Prediction Under Anomalous Circumstances [81.37657557441649]
This paper aims to capture the movement pattern of stock prices under anomalous circumstances.
We train ARIMA and LSTM models at the single-stock level, industry level, and general market level.
Based on 100 companies' stock prices in the period of 2016 to 2020, the models achieve an average prediction accuracy of 98%.
arXiv Detail & Related papers (2021-09-14T18:50:38Z) - Low-Rank Temporal Attention-Augmented Bilinear Network for financial
time-series forecasting [93.73198973454944]
Deep learning models have led to significant performance improvements in many problems coming from different domains, including prediction problems of financial time-series data.
The Temporal Attention-Augmented Bilinear network was recently proposed as an efficient and high-performing model for Limit Order Book time-series forecasting.
In this paper, we propose a low-rank tensor approximation of the model to further reduce the number of trainable parameters and increase its speed.
arXiv Detail & Related papers (2021-07-05T10:15:23Z) - Right Decisions from Wrong Predictions: A Mechanism Design Alternative
to Individual Calibration [107.15813002403905]
Decision makers often need to rely on imperfect probabilistic forecasts.
We propose a compensation mechanism ensuring that the forecasted utility matches the actually accrued utility.
We demonstrate an application showing how passengers could confidently optimize individual travel plans based on flight delay probabilities.
arXiv Detail & Related papers (2020-11-15T08:22:39Z) - Ensemble Forecasting for Intraday Electricity Prices: Simulating
Trajectories [0.0]
Recent studies have shown that the hourly German Intraday Continuous Market is weak-form efficient.
A probabilistic forecasting of the hourly intraday electricity prices is performed by simulating trajectories in every trading window.
The study aims to forecast the price distribution in the German Intraday Continuous Market in the last 3 hours of trading, but the approach allows for application to other continuous markets, especially in Europe.
arXiv Detail & Related papers (2020-05-04T10:21:20Z) - Empirical Study of Market Impact Conditional on Order-Flow Imbalance [0.0]
We show that for small signed order-flows, the price impact grows linearly with increase in the order-flow imbalance.
We have, further, implemented a machine learning algorithm to forecast market impact given a signed order-flow.
Our findings suggest that machine learning models can be used in estimation of financial variables.
arXiv Detail & Related papers (2020-04-17T14:58:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.