Predicting Bad Goods Risk Scores with ARIMA Time Series: A Novel Risk Assessment Approach
- URL: http://arxiv.org/abs/2502.16520v2
- Date: Tue, 25 Feb 2025 11:40:32 GMT
- Title: Predicting Bad Goods Risk Scores with ARIMA Time Series: A Novel Risk Assessment Approach
- Authors: Bishwajit Prasad Gond,
- Abstract summary: This research presents a novel framework that integrates Time Series ARIMA models with a proprietary formula designed to calculate bad goods after time series forecasting.<n> Experimental results, validated on a dataset spanning 2022-2024 for Organic Beer-G 1 Liter, demonstrate that the proposed method outperforms traditional statistical models.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The increasing complexity of supply chains and the rising costs associated with defective or substandard goods (bad goods) highlight the urgent need for advanced predictive methodologies to mitigate risks and enhance operational efficiency. This research presents a novel framework that integrates Time Series ARIMA (AutoRegressive Integrated Moving Average) models with a proprietary formula specifically designed to calculate bad goods after time series forecasting. By leveraging historical data patterns, including sales, returns, and capacity, the model forecasts potential quality failures, enabling proactive decision-making. ARIMA is employed to capture temporal trends in time series data, while the newly developed formula quantifies the likelihood and impact of defects with greater precision. Experimental results, validated on a dataset spanning 2022-2024 for Organic Beer-G 1 Liter, demonstrate that the proposed method outperforms traditional statistical models, such as Exponential Smoothing and Holt-Winters, in both prediction accuracy and risk evaluation. This study advances the field of predictive analytics by bridging time series forecasting, ARIMA, and risk management in supply chain quality control, offering a scalable and practical solution for minimizing losses due to bad goods.
Related papers
- Evidential time-to-event prediction with calibrated uncertainty quantification [12.446406577462069]
Time-to-event analysis provides insights into clinical prognosis and treatment recommendations.<n>We propose an evidential regression model specifically designed for time-to-event prediction.<n>We show that our model delivers both accurate and reliable performance, outperforming state-of-the-art methods.
arXiv Detail & Related papers (2024-11-12T15:06:04Z) - Survival Models: Proper Scoring Rule and Stochastic Optimization with Competing Risks [6.9648613217501705]
SurvivalBoost outperforms 12 state-of-the-art models on 4 real-life datasets.
It provides great calibration, the ability to predict across any time horizon, and computation times faster than existing methods.
arXiv Detail & Related papers (2024-10-22T07:33:34Z) - Automated Data Augmentation for Few-Shot Time Series Forecasting: A Reinforcement Learning Approach Guided by a Model Zoo [34.40047933452929]
We present a pilot study on using reinforcement learning (RL) for time series data augmentation.<n>Our method, ReAugment, tackles three critical questions: which parts of the training set should be augmented, how the augmentation should be performed, and what advantages RL brings to the process.
arXiv Detail & Related papers (2024-09-10T07:34:19Z) - Rating Multi-Modal Time-Series Forecasting Models (MM-TSFM) for Robustness Through a Causal Lens [10.103561529332184]
We focus on multi-modal time-series forecasting, where imprecision due to noisy or incorrect data can lead to erroneous predictions.
We introduce a rating methodology to assess the robustness of Multi-Modal Time-Series Forecasting Models.
arXiv Detail & Related papers (2024-06-12T17:39:16Z) - Loss Shaping Constraints for Long-Term Time Series Forecasting [79.3533114027664]
We present a Constrained Learning approach for long-term time series forecasting that respects a user-defined upper bound on the loss at each time-step.
We propose a practical Primal-Dual algorithm to tackle it, and aims to demonstrate that it exhibits competitive average performance in time series benchmarks, while shaping the errors across the predicted window.
arXiv Detail & Related papers (2024-02-14T18:20:44Z) - Prediction of rare events in the operation of household equipment using
co-evolving time series [1.1249583407496218]
Our approach involves a weighted autologistic regression model, where we leverage the temporal behavior of the data to enhance predictive capabilities.
Evaluation on synthetic and real-world datasets confirms that our approach outperform state-of-the-art of predicting home equipment failure methods.
arXiv Detail & Related papers (2023-12-15T00:21:00Z) - Forecast reconciliation for vaccine supply chain optimization [61.13962963550403]
Vaccine supply chain optimization can benefit from hierarchical time series forecasting.
Forecasts of different hierarchy levels become incoherent when higher levels do not match the sum of the lower levels forecasts.
We tackle the vaccine sale forecasting problem by modeling sales data from GSK between 2010 and 2021 as a hierarchical time series.
arXiv Detail & Related papers (2023-05-02T14:34:34Z) - DeepVol: Volatility Forecasting from High-Frequency Data with Dilated Causal Convolutions [53.37679435230207]
We propose DeepVol, a model based on Dilated Causal Convolutions that uses high-frequency data to forecast day-ahead volatility.
Our empirical results suggest that the proposed deep learning-based approach effectively learns global features from high-frequency data.
arXiv Detail & Related papers (2022-09-23T16:13:47Z) - Back2Future: Leveraging Backfill Dynamics for Improving Real-time
Predictions in Future [73.03458424369657]
In real-time forecasting in public health, data collection is a non-trivial and demanding task.
'Backfill' phenomenon and its effect on model performance has been barely studied in the prior literature.
We formulate a novel problem and neural framework Back2Future that aims to refine a given model's predictions in real-time.
arXiv Detail & Related papers (2021-06-08T14:48:20Z) - When in Doubt: Neural Non-Parametric Uncertainty Quantification for
Epidemic Forecasting [70.54920804222031]
Most existing forecasting models disregard uncertainty quantification, resulting in mis-calibrated predictions.
Recent works in deep neural models for uncertainty-aware time-series forecasting also have several limitations.
We model the forecasting task as a probabilistic generative process and propose a functional neural process model called EPIFNP.
arXiv Detail & Related papers (2021-06-07T18:31:47Z) - Learning Interpretable Deep State Space Model for Probabilistic Time
Series Forecasting [98.57851612518758]
Probabilistic time series forecasting involves estimating the distribution of future based on its history.
We propose a deep state space model for probabilistic time series forecasting whereby the non-linear emission model and transition model are parameterized by networks.
We show in experiments that our model produces accurate and sharp probabilistic forecasts.
arXiv Detail & Related papers (2021-01-31T06:49:33Z) - Forecasting COVID-19 daily cases using phone call data [0.0]
We propose a simple Multiple Linear Regression model optimised to use call data to forecast the number of daily confirmed cases.
Our proposed approach outperforms ARIMA, ETS and a regression model without call data, evaluated by three point forecast error metrics, one prediction interval and two probabilistic forecast accuracy measures.
arXiv Detail & Related papers (2020-10-05T18:07:07Z) - Adversarial Attacks on Probabilistic Autoregressive Forecasting Models [7.305979446312823]
We develop an effective generation of adversarial attacks on neural models that output a sequence of probability distributions rather than a sequence of single values.
We demonstrate that our approach can successfully generate attacks with small input perturbations in two challenging tasks.
arXiv Detail & Related papers (2020-03-08T13:08:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.