論文の概要: Cons-training tensor networks
- arxiv url: http://arxiv.org/abs/2405.09005v3
- Date: Thu, 23 Jan 2025 17:21:43 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-24 15:56:29.597978
- Title: Cons-training tensor networks
- Title(参考訳): Cons-training Tenor Network
- Authors: Javier Lopez-Piqueres, Jing Chen,
- Abstract要約: テンソルネットワークと呼ばれる新しいファミリーを導入する。
textitconstrained matrix product state (MPS)
これらのネットワークは、不等式を含むちょうど任意の離散線型制約をスパースブロック構造に含んでいる。
これらのネットワークは、特に、可能空間上で厳密にサポートされた分散をモデル化するために調整されている。
- 参考スコア(独自算出の注目度): 2.8834278113855896
- License:
- Abstract: In this study, we introduce a novel family of tensor networks, termed \textit{constrained matrix product states} (MPS), designed to incorporate exactly arbitrary discrete linear constraints, including inequalities, into sparse block structures. These tensor networks are particularly tailored for modeling distributions with support strictly over the feasible space, offering benefits such as reducing the search space in optimization problems, alleviating overfitting, improving training efficiency, and decreasing model size. Central to our approach is the concept of a quantum region, an extension of quantum numbers traditionally used in U(1) symmetric tensor networks, adapted to capture any linear constraint, including the unconstrained scenario. We further develop a novel canonical form for these new MPS, which allow for the merging and factorization of tensor blocks according to quantum region fusion rules and permit optimal truncation schemes. Utilizing this canonical form, we apply an unsupervised training strategy to optimize arbitrary objective functions subject to discrete linear constraints. Our method's efficacy is demonstrated by solving the quadratic knapsack problem, achieving superior performance compared to a leading nonlinear integer programming solver. Additionally, we analyze the complexity and scalability of our approach, demonstrating its potential in addressing complex constrained combinatorial optimization problems.
- Abstract(参考訳): 本研究では,不等式を含む厳密な離散線型制約をスパースブロック構造に組み込むように設計されたテンソルネットワークの新たなファミリ「textit{constrained matrix product state} (MPS)」を導入する。
これらのテンソルネットワークは、特に、最適化問題における探索空間の削減、オーバーフィッティングの緩和、トレーニング効率の向上、モデルサイズの削減といった利点を提供する、実現可能な空間を厳密にサポートした分散のモデル化に向いている。
我々のアプローチの中心は量子領域の概念であり、U(1)対称テンソルネットワークで伝統的に使われている量子数の拡張であり、制約のないシナリオを含む任意の線形制約を捉えるように適応されている。
さらに、これらの新しいMPSのための新しい標準形式を開発し、量子領域の融合規則に従ってテンソルブロックの融合と分解を可能にし、最適なトランケーションスキームを許可する。
この標準形式を利用して、離散線形制約を受ける任意の目的関数を最適化するために教師なしのトレーニング戦略を適用する。
本手法の有効性は,二次的なknapsack問題の解法によって実証され,先行する非線形整数計画法と比較して優れた性能を発揮する。
さらに,本手法の複雑性と拡張性を解析し,複雑な制約付き組合せ最適化問題に対処する可能性を示す。
関連論文リスト
- Structured Regularization for Constrained Optimization on the SPD Manifold [1.1126342180866644]
対称ゲージ関数に基づく構造化正規化器のクラスを導入し、より高速な非制約手法でSPD多様体上の制約付き最適化を解けるようにする。
構造正規化器は望ましい構造(特に凸性や凸の差)を保存または誘導するために選択できることを示す。
論文 参考訳(メタデータ) (2024-10-12T22:11:22Z) - Convergence guarantee for linearly-constrained combinatorial optimization with a quantum alternating operator ansatz [0.0]
線形に制約された最適化問題のクラスを解く量子交互演算子アンサッツ(QAOA$+$)を提案する。
このクラスの問題に対して、回路層数が増加するにつれて、最適解に確実に収束する回路を考案する。
この分析はQAOA$+$の性能保証を線形に制約された問題のより一般的な集合に拡張し、将来の一般化のためのツールを提供する。
論文 参考訳(メタデータ) (2024-09-27T15:23:47Z) - A Double Tracking Method for Optimization with Decentralized Generalized Orthogonality Constraints [4.6796315389639815]
分散最適化問題は分散制約の存在下では解決できない。
目的関数の勾配と制約写像のヤコビアンを同時に追跡する新しいアルゴリズムを導入する。
合成と実世界の両方のデータセットに数値的な結果を示す。
論文 参考訳(メタデータ) (2024-09-08T06:57:35Z) - Quick design of feasible tensor networks for constrained combinatorial optimization [1.8775413720750924]
近年,実用化のための制約付き最適化問題に対して,テンソルネットワークが適用されている。
1つのアプローチは、nilpotent-matrix操作でテンソルネットワークを構築することである。
提案手法は,制約付き最適化問題に対する実現可能なテンソルネットワークの発見を容易にすることが期待されている。
論文 参考訳(メタデータ) (2024-09-03T08:36:23Z) - The Convex Landscape of Neural Networks: Characterizing Global Optima
and Stationary Points via Lasso Models [75.33431791218302]
ディープニューラルネットワーク(DNN)モデルは、プログラミング目的に使用される。
本稿では,凸型神経回復モデルについて検討する。
定常的非次元目的物はすべて,グローバルサブサンプリング型凸解法プログラムとして特徴付けられることを示す。
また, 静止非次元目的物はすべて, グローバルサブサンプリング型凸解法プログラムとして特徴付けられることを示す。
論文 参考訳(メタデータ) (2023-12-19T23:04:56Z) - Neural Fields with Hard Constraints of Arbitrary Differential Order [61.49418682745144]
我々は、ニューラルネットワークに厳しい制約を課すための一連のアプローチを開発する。
制約は、ニューラルネットワークとそのデリバティブに適用される線形作用素として指定することができる。
私たちのアプローチは、広範囲の現実世界のアプリケーションで実証されています。
論文 参考訳(メタデータ) (2023-06-15T08:33:52Z) - Symmetric Tensor Networks for Generative Modeling and Constrained
Combinatorial Optimization [72.41480594026815]
ポートフォリオ最適化からロジスティクスに至るまで、制約付き最適化問題は業界に多い。
これらの問題の解決における主要な障害の1つは、有効な検索空間を制限する非自明なハード制約の存在である。
本研究では、Ax=bという形の任意の整数値等式制約をU(1)対称ネットワーク(TN)に直接エンコードし、それらの適用性を量子に着想を得た生成モデルとして活用する。
論文 参考訳(メタデータ) (2022-11-16T18:59:54Z) - Optimization on manifolds: A symplectic approach [127.54402681305629]
本稿では、最適化問題を解くための一般的な枠組みとして、ディラックの制約付きハミルトン系理論の散逸拡張を提案する。
我々の(加速された)アルゴリズムのクラスは単純で効率的なだけでなく、幅広い文脈にも適用できる。
論文 参考訳(メタデータ) (2021-07-23T13:43:34Z) - Efficient Methods for Structured Nonconvex-Nonconcave Min-Max
Optimization [98.0595480384208]
定常点に収束する一般化外空間を提案する。
このアルゴリズムは一般の$p$ノルド空間だけでなく、一般の$p$次元ベクトル空間にも適用される。
論文 参考訳(メタデータ) (2020-10-31T21:35:42Z) - Convex Geometry and Duality of Over-parameterized Neural Networks [70.15611146583068]
有限幅2層ReLUネットワークの解析のための凸解析手法を開発した。
正規化学習問題に対する最適解が凸集合の極点として特徴づけられることを示す。
高次元では、トレーニング問題は無限に多くの制約を持つ有限次元凸問題としてキャストできることが示される。
論文 参考訳(メタデータ) (2020-02-25T23:05:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。