Hybrid Meta-Solving for Practical Quantum Computing
- URL: http://arxiv.org/abs/2405.09115v1
- Date: Wed, 15 May 2024 06:19:39 GMT
- Title: Hybrid Meta-Solving for Practical Quantum Computing
- Authors: Domenik Eichhorn, Maximilian Schweikart, Nick Poser, Frederik Fiand, Benedikt Poggel, Jeanette Miriam Lorenz,
- Abstract summary: This paper works towards the creation of an accessible hybrid software stack for solving optimization problems.
We introduce a novel approach that we call Hybrid Meta-Solving, which combines classical and quantum optimization techniques.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The advent of quantum algorithms has initiated a discourse on the potential for quantum speedups for optimization problems. However, several factors still hinder a practical realization of the potential benefits. These include the lack of advanced, error-free quantum hardware, the absence of accessible software stacks for seamless integration and interaction, and the lack of methods that allow us to leverage the theoretical advantages to real-world use cases. This paper works towards the creation of an accessible hybrid software stack for solving optimization problems, aiming to create a fundamental platform that can utilize quantum technologies to enhance the solving process. We introduce a novel approach that we call Hybrid Meta-Solving, which combines classical and quantum optimization techniques to create customizable and extensible hybrid solvers. We decompose mathematical problems into multiple sub-problems that can be solved by classical or quantum solvers, and propose techniques to semi-automatically build the best solver for a given problem. Implemented in our ProvideQ toolbox prototype, Meta-Solving provides interactive workflows for accessing quantum computing capabilities. Our evaluation demonstrates the applicability of Meta-Solving in industrial use cases. It shows that we can reuse state-of-the-art classical algorithms and extend them with quantum computing techniques. Our approach is designed to be at least as efficient as state-of-the-art classical techniques, while having the potential to outperform them if future advances in the quantum domain are made.
Related papers
- Quantum algorithms: A survey of applications and end-to-end complexities [90.05272647148196]
The anticipated applications of quantum computers span across science and industry.
We present a survey of several potential application areas of quantum algorithms.
We outline the challenges and opportunities in each area in an "end-to-end" fashion.
arXiv Detail & Related papers (2023-10-04T17:53:55Z) - QPLEX: Realizing the Integration of Quantum Computing into Combinatorial
Optimization Software [1.9109292348200242]
Combinatorial optimization has emerged as one of the key target areas for quantum computers.
In order to utilize quantum resources, users require domain-specific knowledge of quantum algorithms, SDKs and libraries.
This paper presents a tool for the seamless utilization of quantum resources through a classical interface.
arXiv Detail & Related papers (2023-07-26T17:18:07Z) - A Practitioner's Guide to Quantum Algorithms for Optimisation Problems [0.0]
NP-hard optimisation problems are common in industrial areas such as logistics and finance.
This paper aims to provide a comprehensive overview of the theory of quantum optimisation techniques.
It focuses on their near-term potential for noisy intermediate scale quantum devices.
arXiv Detail & Related papers (2023-05-12T08:57:36Z) - Quantum Machine Learning: from physics to software engineering [58.720142291102135]
We show how classical machine learning approach can help improve the facilities of quantum computers.
We discuss how quantum algorithms and quantum computers may be useful for solving classical machine learning tasks.
arXiv Detail & Related papers (2023-01-04T23:37:45Z) - NP-hard but no longer hard to solve? Using quantum computing to tackle
optimization problems [1.1470070927586016]
We discuss the field of quantum optimization where we solve optimisation problems using quantum computers.
We demonstrate this through a proper use case and discuss the current quality of quantum computers.
We conclude with discussion on some recent quantum optimization breakthroughs and the current status and future directions.
arXiv Detail & Related papers (2022-12-21T12:56:37Z) - Using a quantum computer to solve a real-world problem -- what can be
achieved today? [0.0]
Quantum computing is an important developing technology with the potential to revolutionise the landscape of scientific and business problems.
The widespread excitement derives from the potential for a fault tolerant quantum computer to solve previously intractable problems.
We are currently in the so-called NISQ era where more quantum approaches are being applied to early versions of quantum hardware.
arXiv Detail & Related papers (2022-11-23T16:10:53Z) - Towards an Automated Framework for Realizing Quantum Computing Solutions [3.610459670994051]
We envision a framework that allows users to employ quantum computing solutions in an automatic fashion.
We provide proof-of-concept implementations for two different classes of problems which are publicly available on GitHub.
arXiv Detail & Related papers (2022-10-26T18:00:01Z) - Adiabatic Quantum Computing for Multi Object Tracking [170.8716555363907]
Multi-Object Tracking (MOT) is most often approached in the tracking-by-detection paradigm, where object detections are associated through time.
As these optimization problems are often NP-hard, they can only be solved exactly for small instances on current hardware.
We show that our approach is competitive compared with state-of-the-art optimization-based approaches, even when using of-the-shelf integer programming solvers.
arXiv Detail & Related papers (2022-02-17T18:59:20Z) - Variational Quantum Optimization with Multi-Basis Encodings [62.72309460291971]
We introduce a new variational quantum algorithm that benefits from two innovations: multi-basis graph complexity and nonlinear activation functions.
Our results in increased optimization performance, two increase in effective landscapes and a reduction in measurement progress.
arXiv Detail & Related papers (2021-06-24T20:16:02Z) - Error mitigation and quantum-assisted simulation in the error corrected
regime [77.34726150561087]
A standard approach to quantum computing is based on the idea of promoting a classically simulable and fault-tolerant set of operations.
We show how the addition of noisy magic resources allows one to boost classical quasiprobability simulations of a quantum circuit.
arXiv Detail & Related papers (2021-03-12T20:58:41Z) - Electronic structure with direct diagonalization on a D-Wave quantum
annealer [62.997667081978825]
This work implements the general Quantum Annealer Eigensolver (QAE) algorithm to solve the molecular electronic Hamiltonian eigenvalue-eigenvector problem on a D-Wave 2000Q quantum annealer.
We demonstrate the use of D-Wave hardware for obtaining ground and electronically excited states across a variety of small molecular systems.
arXiv Detail & Related papers (2020-09-02T22:46:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.