論文の概要: Artificial Intelligence for the Internal Democracy of Political Parties
- arxiv url: http://arxiv.org/abs/2405.09529v2
- Date: Sat, 26 Oct 2024 09:32:33 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-29 12:19:48.735602
- Title: Artificial Intelligence for the Internal Democracy of Political Parties
- Title(参考訳): 政党内部民主主義のための人工知能
- Authors: Claudio Novelli, Giuliano Formisano, Prathm Juneja, Giulia Sandri, Luciano Floridi,
- Abstract要約: この記事は、AIが政党内における民主的プロセスの測定と実施を強化することを主張している。
形式的パラメータや自己報告データ、調査のようなツールに依存することが多いIDDを測定する従来の方法の限界を特定します。
記事は、データプライバシに関する懸念、操作の可能性、テクノロジへの過信の危険性など、IDDのための機械学習の主なリスクについて考察することで、結論付けている。
- 参考スコア(独自算出の注目度): 0.13194391758295113
- License:
- Abstract: The article argues that AI can enhance the measurement and implementation of democratic processes within political parties, known as Intra-Party Democracy (IPD). It identifies the limitations of traditional methods for measuring IPD, which often rely on formal parameters, self-reported data, and tools like surveys. Such limitations lead to the collection of partial data, rare updates, and significant demands on resources. To address these issues, the article suggests that specific data management and Machine Learning (ML) techniques, such as natural language processing and sentiment analysis, can improve the measurement (ML about) and practice (ML for) of IPD. The article concludes by considering some of the principal risks of ML for IPD, including concerns over data privacy, the potential for manipulation, and the dangers of overreliance on technology.
- Abstract(参考訳): 記事では、AIは政党内の民主的プロセスの測定と実装を強化することができる、と論じている。
形式的パラメータや自己報告データ、調査のようなツールに依存することが多いIDDを測定する従来の方法の限界を特定します。
このような制限は、部分的なデータの収集、まれな更新、リソースに対する大きな要求につながります。
これらの問題に対処するために、自然言語処理や感情分析のような特定のデータ管理と機械学習(ML)技術は、IDDの測定(ML about)と実践(ML for)を改善することができると提案する。
記事は結論として、データプライバシに関する懸念、操作の可能性、テクノロジへの過信の危険性など、IDDにおけるMLの主なリスクについて検討している。
関連論文リスト
- Detecting Training Data of Large Language Models via Expectation Maximization [62.28028046993391]
メンバーシップ推論攻撃(MIA)は、特定のインスタンスがターゲットモデルのトレーニングデータの一部であるかどうかを判断することを目的としている。
大規模言語モデル(LLM)にMIAを適用することは、事前学習データの大規模化と、会員シップのあいまいさによって、ユニークな課題をもたらす。
EM-MIAは,予測最大化アルゴリズムを用いて,メンバーシップスコアとプレフィックススコアを反復的に洗練するLLMの新しいMIA手法である。
論文 参考訳(メタデータ) (2024-10-10T03:31:16Z) - Con-ReCall: Detecting Pre-training Data in LLMs via Contrastive Decoding [118.75567341513897]
既存のメソッドは通常、ターゲットテキストを分離して分析するか、非メンバーコンテキストでのみ分析する。
Con-ReCallは、メンバと非メンバのコンテキストによって誘導される非対称な分布シフトを利用する新しいアプローチである。
論文 参考訳(メタデータ) (2024-09-05T09:10:38Z) - An evidence-based methodology for human rights impact assessment (HRIA) in the development of AI data-intensive systems [49.1574468325115]
我々は、すでに人権がデータ利用の分野で決定を下していることを示している。
本研究は人権影響評価(HRIA)の方法論とモデルである。
提案手法は,具体的ケーススタディで検証し,その有効性と有効性を示す。
論文 参考訳(メタデータ) (2024-07-30T16:27:52Z) - Privacy Implications of Explainable AI in Data-Driven Systems [0.0]
機械学習(ML)モデルは、解釈可能性の欠如に悩まされる。
透明性の欠如は、しばしばMLモデルのブラックボックスの性質と呼ばれ、信頼を損なう。
XAI技術は、内部の意思決定プロセスを説明するためのフレームワークと方法を提供することによって、この問題に対処する。
論文 参考訳(メタデータ) (2024-06-22T08:51:58Z) - Large Language Models: A New Approach for Privacy Policy Analysis at Scale [1.7570777893613145]
本研究は,大規模プライバシポリシから効果的かつ効率的にプライバシプラクティスを抽出する代替手段として,LLM(Large Language Models)の適用を提案する。
我々はChatGPTやLlama 2といった有名なLLMを活用し、プロンプト、パラメータ、モデルの最適設計に関するガイダンスを提供する。
評価では、ドメイン内のいくつかの有名なデータセットをベンチマークとして、その例外的な性能を評価し、F1スコアが93%を超えた。
論文 参考訳(メタデータ) (2024-05-31T15:12:33Z) - The Frontier of Data Erasure: Machine Unlearning for Large Language Models [56.26002631481726]
大規模言語モデル(LLM)はAIの進歩の基礎となっている。
LLMは機密情報、偏見情報、著作権情報を記憶し、広めることによってリスクを生じさせる。
機械学習は、これらの懸念を軽減するための最先端のソリューションとして現れます。
論文 参考訳(メタデータ) (2024-03-23T09:26:15Z) - LM-Polygraph: Uncertainty Estimation for Language Models [71.21409522341482]
不確実性推定(UE)手法は、大規模言語モデル(LLM)の安全性、責任性、効果的な利用のための1つの経路である。
テキスト生成タスクにおけるLLMの最先端UEメソッドのバッテリを実装したフレームワークであるLM-PolygraphをPythonで統一したプログラムインタフェースで導入する。
研究者によるUEテクニックの一貫した評価のための拡張可能なベンチマークと、信頼スコア付き標準チャットダイアログを強化するデモWebアプリケーションを導入している。
論文 参考訳(メタデータ) (2023-11-13T15:08:59Z) - Addressing contingency in algorithmic (mis)information classification:
Toward a responsible machine learning agenda [0.9659642285903421]
データサイエンティストは、モデルトレーニングとテストに使用される「真実の情報源の客観性、信頼性、正当性」にスタンスを取る必要がある。
彼らの報告された高い正確さと性能にもかかわらず、ML駆動のモデレーションシステムは、オンラインの公開討論を形作り、不正な検閲や偽の信念の強化のような下流のネガティブな影響を生み出す可能性がある。
論文 参考訳(メタデータ) (2022-10-05T17:34:51Z) - Distributed Machine Learning and the Semblance of Trust [66.1227776348216]
フェデレートラーニング(FL)により、データ所有者はデータを共有することなく、データガバナンスを維持し、モデルトレーニングをローカルで行うことができる。
FLと関連する技術は、しばしばプライバシー保護と表現される。
この用語が適切でない理由を説明し、プライバシの形式的定義を念頭に設計されていないプロトコルに対する過度な信頼に関連するリスクを概説する。
論文 参考訳(メタデータ) (2021-12-21T08:44:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。