論文の概要: AD-Aligning: Emulating Human-like Generalization for Cognitive Domain Adaptation in Deep Learning
- arxiv url: http://arxiv.org/abs/2405.09582v1
- Date: Wed, 15 May 2024 02:34:06 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-17 18:06:04.741836
- Title: AD-Aligning: Emulating Human-like Generalization for Cognitive Domain Adaptation in Deep Learning
- Title(参考訳): AD-Aligning:ディープラーニングにおける認知領域適応のための人間ライクな一般化のエミュレート
- Authors: Zhuoying Li, Bohua Wan, Cong Mu, Ruzhang Zhao, Shushan Qiu, Chao Yan,
- Abstract要約: ドメイン適応は、ディープラーニングモデルがさまざまなドメインにまたがる一般化を可能にするために重要である。
AD-Aligning(AD-Aligning、AD-Aligning、AD-Aligning、AD-Aligning、AD-Aligning、AD-Aligning、AD-Aligning、AD-Aligning、AD-Aligning)を導入。
以上の結果から,AD-Aligningは人間の知覚に固有のニュアンス認知過程をエミュレートする能力を示した。
- 参考スコア(独自算出の注目度): 3.3543468626874486
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Domain adaptation is pivotal for enabling deep learning models to generalize across diverse domains, a task complicated by variations in presentation and cognitive nuances. In this paper, we introduce AD-Aligning, a novel approach that combines adversarial training with source-target domain alignment to enhance generalization capabilities. By pretraining with Coral loss and standard loss, AD-Aligning aligns target domain statistics with those of the pretrained encoder, preserving robustness while accommodating domain shifts. Through extensive experiments on diverse datasets and domain shift scenarios, including noise-induced shifts and cognitive domain adaptation tasks, we demonstrate AD-Aligning's superior performance compared to existing methods such as Deep Coral and ADDA. Our findings highlight AD-Aligning's ability to emulate the nuanced cognitive processes inherent in human perception, making it a promising solution for real-world applications requiring adaptable and robust domain adaptation strategies.
- Abstract(参考訳): ドメイン適応は、プレゼンテーションのバリエーションや認知的ニュアンスによって複雑化するタスクである、さまざまなドメインにわたるディープラーニングモデルを一般化する上で、重要な要素である。
本稿では,Ad-Aligningについて紹介する。AD-Aligningは,敵対的トレーニングとソース・ターゲット領域アライメントを組み合わせた新しい手法で,一般化能力を向上する。
コーラル損失と標準損失で事前訓練することにより、AD-Aligningは対象のドメイン統計を事前訓練されたエンコーダの統計と整合させ、ドメインシフトを調節しながら堅牢性を維持する。
ノイズによるシフトや認知領域適応タスクなど,さまざまなデータセットやドメインシフトシナリオに関する広範な実験を通じて,AD-AligningのパフォーマンスをDeep CoralやADDAといった既存手法と比較して実証した。
われわれはAD-Aligningが人間の知覚に固有のニュアンス認知過程をエミュレートする能力を強調した。
関連論文リスト
- Improving Intrusion Detection with Domain-Invariant Representation Learning in Latent Space [4.871119861180455]
マルチタスク学習を用いた2相表現学習手法を提案する。
我々は、先行空間と潜時空間の間の相互情報の最小化により、潜時空間を解き放つ。
モデルの有効性を複数のサイバーセキュリティデータセットで評価する。
論文 参考訳(メタデータ) (2023-12-28T17:24:13Z) - Towards Full-scene Domain Generalization in Multi-agent Collaborative Bird's Eye View Segmentation for Connected and Autonomous Driving [49.03947018718156]
協調的な知覚の訓練と推論の段階で利用される統合されたドメイン一般化フレームワークを提案する。
また、システム内ドメインアライメント機構を導入し、コネクテッドおよび自律走行車間のドメインの差を減らし、潜在的に排除する。
論文 参考訳(メタデータ) (2023-11-28T12:52:49Z) - Towards Subject Agnostic Affective Emotion Recognition [8.142798657174332]
脳波信号による脳-コンピュータインタフェース(aBCI)の不安定性
本稿では,メタラーニングに基づくメタドメイン適応手法を提案する。
提案手法は,パブリックなaBICsデータセットの実験において有効であることが示されている。
論文 参考訳(メタデータ) (2023-10-20T23:44:34Z) - Cross-Domain Policy Adaptation via Value-Guided Data Filtering [57.62692881606099]
動的ミスマッチで異なるドメインにまたがるポリシーを一般化することは、強化学習において重要な課題となる。
本稿では、ペア化された値ターゲットの近接に基づいて、ソースドメインからの遷移を選択的に共有するバリューガイドデータフィルタリング(VGDF)アルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-05-28T04:08:40Z) - AVATAR: Adversarial self-superVised domain Adaptation network for TARget
domain [11.764601181046496]
本稿では,未ラベル対象領域データの予測のための教師なし領域適応(UDA)手法を提案する。
本稿では,AVATAR(Adversarial Self-superVised Domain Adaptation Network for the TARget domain)アルゴリズムを提案する。
提案手法は,3つのUDAベンチマークにおいて,最先端の手法を著しく上回っている。
論文 参考訳(メタデータ) (2023-04-28T20:31:56Z) - Unsupervised Domain Adaptation via Style-Aware Self-intermediate Domain [52.783709712318405]
非教師なしドメイン適応(UDA)は、ラベル豊富なソースドメインから関連するがラベルのないターゲットドメインに知識を伝達する、かなりの注目を集めている。
本研究では,大規模なドメインギャップと伝達知識を橋渡しし,クラス非ネイティブ情報の損失を軽減するために,SAFF(style-aware feature fusion)法を提案する。
論文 参考訳(メタデータ) (2022-09-05T10:06:03Z) - Decompose to Adapt: Cross-domain Object Detection via Feature
Disentanglement [79.2994130944482]
本研究では,DDF(Domain Disentanglement Faster-RCNN)を設計し,タスク学習のための特徴のソース固有情報を排除した。
DDF法は,グローバルトリプルト・ディアンタングルメント(GTD)モジュールとインスタンス類似性・ディアンタングルメント(ISD)モジュールを用いて,グローバルおよびローカルステージでの機能ディアンタングルを容易にする。
提案手法は,4つのUDAオブジェクト検出タスクにおいて最先端の手法より優れており,広い適用性で有効であることが実証された。
論文 参考訳(メタデータ) (2022-01-06T05:43:01Z) - Dynamic Domain Adaptation for Efficient Inference [12.713628738434881]
ドメイン適応(DA)は、ラベル付きソースドメインからラベルなしターゲットドメインへの知識転送を可能にする。
以前のdaアプローチのほとんどは、適応能力を改善するために複雑で強力なディープニューラルネットワークを活用する。
低リソースシナリオにおいて効率的なターゲット推論を同時に実現できる動的ドメイン適応(DDA)フレームワークを提案する。
論文 参考訳(メタデータ) (2021-03-26T08:53:16Z) - Adaptively-Accumulated Knowledge Transfer for Partial Domain Adaptation [66.74638960925854]
部分ドメイン適応(PDA)は、ソースドメインラベル空間がターゲットドメインを置き換えるとき、現実的で困難な問題を扱う。
本稿では,2つの領域にまたがる関連カテゴリを整合させる適応的知識伝達フレームワーク(A$2KT)を提案する。
論文 参考訳(メタデータ) (2020-08-27T00:53:43Z) - Domain Conditioned Adaptation Network [90.63261870610211]
本稿では,ドメイン条件付きチャネルアテンション機構を用いて,異なる畳み込みチャネルを励起するドメイン条件適応ネットワーク(DCAN)を提案する。
これは、ディープDAネットワークのドメインワイドな畳み込みチャネルアクティベーションを探求する最初の試みである。
論文 参考訳(メタデータ) (2020-05-14T04:23:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。