論文の概要: Fast Two-Time-Scale Stochastic Gradient Method with Applications in Reinforcement Learning
- arxiv url: http://arxiv.org/abs/2405.09660v2
- Date: Mon, 10 Jun 2024 07:32:12 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-11 23:54:54.078212
- Title: Fast Two-Time-Scale Stochastic Gradient Method with Applications in Reinforcement Learning
- Title(参考訳): 強化学習における高速2時間スケール確率勾配法
- Authors: Sihan Zeng, Thinh T. Doan,
- Abstract要約: 本稿では,従来の手法よりもはるかに高速な収束を実現する2段階最適化手法を提案する。
提案アルゴリズムは,様々な条件下で特徴付けられ,オンラインサンプルベース手法に特化していることを示す。
- 参考スコア(独自算出の注目度): 5.325297567945828
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Two-time-scale optimization is a framework introduced in Zeng et al. (2024) that abstracts a range of policy evaluation and policy optimization problems in reinforcement learning (RL). Akin to bi-level optimization under a particular type of stochastic oracle, the two-time-scale optimization framework has an upper level objective whose gradient evaluation depends on the solution of a lower level problem, which is to find the root of a strongly monotone operator. In this work, we propose a new method for solving two-time-scale optimization that achieves significantly faster convergence than the prior arts. The key idea of our approach is to leverage an averaging step to improve the estimates of the operators in both lower and upper levels before using them to update the decision variables. These additional averaging steps eliminate the direct coupling between the main variables, enabling the accelerated performance of our algorithm. We characterize the finite-time convergence rates of the proposed algorithm under various conditions of the underlying objective function, including strong convexity, convexity, Polyak-Lojasiewicz condition, and general non-convexity. These rates significantly improve over the best-known complexity of the standard two-time-scale stochastic approximation algorithm. When applied to RL, we show how the proposed algorithm specializes to novel online sample-based methods that surpass or match the performance of the existing state of the art. Finally, we support our theoretical results with numerical simulations in RL.
- Abstract(参考訳): 二段階最適化はZeng et al (2024)で導入されたフレームワークであり、強化学習(RL)における様々な政策評価と政策最適化問題を抽象化する。
この2時間スケール最適化フレームワークは、特定の確率的オラクルの下での双レベル最適化と同様に、低レベル問題の解に依存する勾配評価を持つ上位レベル目標を持ち、強い単調作用素の根を求める。
本研究では,従来の手法よりもはるかに高速な収束を実現する2段階最適化手法を提案する。
我々のアプローチの鍵となる考え方は、決定変数を更新する前に、下層と上層の両方の演算子の見積もりを改善する平均的なステップを活用することである。
これらの付加的な平均化ステップは、主変数間の直接結合を排除し、アルゴリズムの性能を高速化する。
提案アルゴリズムの有限時間収束速度を, 強凸性, 凸性, ポリアック・ロジャシエヴィチ条件, 一般凸性など, 基礎となる目的関数の様々な条件下で特徴づける。
これらの値は、標準的な2時間スケール確率近似アルゴリズムの最もよく知られた複雑さよりも大幅に改善される。
RLに適用した場合、提案アルゴリズムが既存の最先端技術に匹敵する新しいオンラインサンプルベース手法にどのように特化しているかを示す。
最後に,RLの数値シミュレーションによる理論的結果を支持する。
関連論文リスト
- Provably Faster Algorithms for Bilevel Optimization via Without-Replacement Sampling [96.47086913559289]
勾配に基づくアルゴリズムはバイレベル最適化に広く用いられている。
本研究では,より高速な収束率を実現する非置換サンプリングに基づくアルゴリズムを提案する。
合成および実世界の両方のアプリケーションに対してアルゴリズムを検証する。
論文 参考訳(メタデータ) (2024-11-07T17:05:31Z) - Towards Differentiable Multilevel Optimization: A Gradient-Based Approach [1.6114012813668932]
本稿では,多レベル最適化のための新しい勾配に基づくアプローチを提案する。
本手法は解の精度と収束速度を両立させながら計算複雑性を著しく低減する。
私たちの知る限りでは、これは暗黙の微分の一般的なバージョンを提供する最初のアルゴリズムの1つである。
論文 参考訳(メタデータ) (2024-10-15T06:17:59Z) - Faster Algorithm and Sharper Analysis for Constrained Markov Decision
Process [56.55075925645864]
制約付き意思決定プロセス (CMDP) の問題点について検討し, エージェントは, 複数の制約を条件として, 期待される累積割引報酬を最大化することを目的とする。
新しいユーティリティ・デュアル凸法は、正規化ポリシー、双対正則化、ネステロフの勾配降下双対という3つの要素の新たな統合によって提案される。
これは、凸制約を受ける全ての複雑性最適化に対して、非凸CMDP問題が$mathcal O (1/epsilon)$の低い境界に達する最初の実演である。
論文 参考訳(メタデータ) (2021-10-20T02:57:21Z) - A Two-Time-Scale Stochastic Optimization Framework with Applications in Control and Reinforcement Learning [13.908826484332282]
最適化問題の解法として,新しい2段階勾配法を提案する。
最初の貢献は、提案した2時間スケール勾配アルゴリズムの有限時間複雑性を特徴づけることである。
我々は、強化学習における勾配に基づく政策評価アルゴリズムに適用する。
論文 参考訳(メタデータ) (2021-09-29T23:15:23Z) - Bilevel Optimization for Machine Learning: Algorithm Design and
Convergence Analysis [12.680169619392695]
この論文は、2レベル最適化アルゴリズムに対する総合収束率解析を提供する。
問題に基づく定式化では、AIDおよびITDに基づく2レベルアルゴリズムの収束率解析を行う。
そこで我々は,ゆるやかな仮定で形状収束解析を行う加速バイレベルアルゴリズムを開発した。
論文 参考訳(メタデータ) (2021-07-31T22:05:47Z) - Momentum Accelerates the Convergence of Stochastic AUPRC Maximization [80.8226518642952]
高精度リコール曲線(AUPRC)に基づく領域の最適化について検討し,不均衡なタスクに広く利用されている。
我々は、$O (1/epsilon4)$のより優れた反復による、$epsilon$定常解を見つけるための新しい運動量法を開発する。
また,O(1/epsilon4)$と同じ複雑さを持つ適応手法の新たなファミリを設計し,実際により高速な収束を享受する。
論文 参考訳(メタデータ) (2021-07-02T16:21:52Z) - Lower Bounds and Optimal Algorithms for Smooth and Strongly Convex
Decentralized Optimization Over Time-Varying Networks [79.16773494166644]
通信ネットワークのノード間を分散的に保存するスムーズで強い凸関数の和を最小化するタスクについて検討する。
我々は、これらの下位境界を達成するための2つの最適アルゴリズムを設計する。
我々は,既存の最先端手法と実験的な比較を行うことにより,これらのアルゴリズムの理論的効率を裏付ける。
論文 参考訳(メタデータ) (2021-06-08T15:54:44Z) - Bilevel Optimization: Convergence Analysis and Enhanced Design [63.64636047748605]
バイレベル最適化は多くの機械学習問題に対するツールである。
Stoc-BiO という新しい確率効率勾配推定器を提案する。
論文 参考訳(メタデータ) (2020-10-15T18:09:48Z) - Fast Objective & Duality Gap Convergence for Non-Convex Strongly-Concave
Min-Max Problems with PL Condition [52.08417569774822]
本稿では,深層学習(深層AUC)により注目度が高まっている,円滑な非凹部min-max問題の解法に焦点をあてる。
論文 参考訳(メタデータ) (2020-06-12T00:32:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。