Exponential precision by reaching a quantum critical point
- URL: http://arxiv.org/abs/2112.11264v2
- Date: Fri, 14 Jan 2022 11:25:41 GMT
- Title: Exponential precision by reaching a quantum critical point
- Authors: Louis Garbe, Obinna Abah, Simone Felicetti, Ricardo Puebla
- Abstract summary: We report a protocol that is capable of surpassing the quadratic scaling, and yields an exponential advantage.
The exponential advantage stems from the breakdown of the adiabatic condition close to a critical point.
Our findings unveil a novel quantum metrological protocol whose precision scaling goes beyond the paradigmatic Heisenberg limit.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum metrology shows that by exploiting nonclassical resources it is
possible to overcome the fundamental limit of precision found for classical
parameter-estimation protocols. The scaling of the quantum Fisher information
-- which provides an upper bound to the achievable precision -- with respect to
the protocol duration is then of primarily importance to assess its
performances. In classical protocols the quantum Fisher information scales
linearly with time, while typical quantum-enhanced strategies achieve a
quadratic (Heisenberg) or even higher-order polynomial scalings. Here we report
a protocol that is capable of surpassing the polynomial scaling, and yields an
exponential advantage. Such exponential advantage is achieved by approaching,
but without crossing, the critical point of a quantum phase transition of a
fully-connected model in the thermodynamic limit. The exponential advantage
stems from the breakdown of the adiabatic condition close to a critical point.
As we demonstrate, this exponential scaling is well captured by the new bound
derived in arXiv:2110.04144, which in turn allows us to obtain approximate
analytical expressions for the quantum Fisher information that agree with exact
numerical simulations. In addition, we discuss the limitations to the
exponential scaling when considering a finite-size system as well as its
robustness against decoherence effects. Hence, our findings unveil a novel
quantum metrological protocol whose precision scaling goes beyond the
paradigmatic Heisenberg limit with respect to the protocol duration.
Related papers
- Criticality-Enhanced Quantum Sensing with a Parametric Superconducting Resonator [0.0]
We implement a critical quantum sensor using a superconducting parametric (i.e., two-photon driven) Kerr resonator.
We show that quadratic precision scaling with respect to the system size can be achieved with finite values of the Kerr nonlinearity.
arXiv Detail & Related papers (2024-09-30T05:43:08Z) - Achieving Heisenberg scaling by probe-ancilla interaction in quantum metrology [0.0]
Heisenberg scaling is an ultimate precision limit of parameter estimation allowed by the principles of quantum mechanics.
We show that interactions between the probes and an ancillary system may also increase the precision of parameter estimation to surpass the standard quantum limit.
Our protocol features in two aspects: (i) the Heisenberg scaling can be achieved by a product state of the probes, (ii) mere local measurement on the ancilla is sufficient.
arXiv Detail & Related papers (2024-07-23T23:11:50Z) - Qubit-assisted quantum metrology [2.4927008953071725]
We propose a quantum metrology protocol based on a two-step joint evolution of the probe system and an ancillary qubit.
We find that QFI can approach the Heisenberg scaling $N2$ with respect to the quantum number $N$, even when the probe system is prepared in a classical state.
arXiv Detail & Related papers (2024-04-19T06:25:13Z) - Mitigating Errors on Superconducting Quantum Processors through Fuzzy
Clustering [38.02852247910155]
A new Quantum Error Mitigation (QEM) technique uses Fuzzy C-Means clustering to specifically identify measurement error patterns.
We report a proof-of-principle validation of the technique on a 2-qubit register, obtained as a subset of a real NISQ 5-qubit superconducting quantum processor.
We demonstrate that the FCM-based QEM technique allows for reasonable improvement of the expectation values of single- and two-qubit gates based quantum circuits.
arXiv Detail & Related papers (2024-02-02T14:02:45Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Analyzing Prospects for Quantum Advantage in Topological Data Analysis [35.423446067065576]
We analyze and optimize an improved quantum algorithm for topological data analysis.
We show that super-quadratic quantum speedups are only possible when targeting a multiplicative error approximation.
We argue that quantum circuits with tens of billions of Toffoli can solve seemingly classically intractable instances.
arXiv Detail & Related papers (2022-09-27T17:56:15Z) - Probing finite-temperature observables in quantum simulators of spin
systems with short-time dynamics [62.997667081978825]
We show how finite-temperature observables can be obtained with an algorithm motivated from the Jarzynski equality.
We show that a finite temperature phase transition in the long-range transverse field Ising model can be characterized in trapped ion quantum simulators.
arXiv Detail & Related papers (2022-06-03T18:00:02Z) - Critical Quantum Metrology with Fully-Connected Models: From Heisenberg
to Kibble-Zurek Scaling [0.0]
Phase transitions represent a compelling tool for classical and quantum sensing applications.
Quantum sensors can saturate the Heisenberg scaling in the limit of large probe number and long measurement time.
Our analysis unveils the existence of universal precision-scaling regimes.
arXiv Detail & Related papers (2021-10-08T14:11:54Z) - Understanding and Improving Critical Metrology. Quenching Superradiant
Light-Matter Systems Beyond the Critical Point [0.0]
An improved critical quantum metrology protocol relies on quenching a system exhibiting a superradiant quantum phase transition beyond its critical point.
We show that this approach can lead to an exponential increase of the quantum Fisher information in time.
In this case an additional exponential enhancement of the quantum Fisher information can be observed with the number of atoms $N$ in the cavity.
arXiv Detail & Related papers (2021-10-08T11:52:44Z) - Bosonic field digitization for quantum computers [62.997667081978825]
We address the representation of lattice bosonic fields in a discretized field amplitude basis.
We develop methods to predict error scaling and present efficient qubit implementation strategies.
arXiv Detail & Related papers (2021-08-24T15:30:04Z) - In and out of equilibrium quantum metrology with mean-field quantum
criticality [68.8204255655161]
We study the influence that collective transition phenomena have on quantum metrological protocols.
The single spherical quantum spin (SQS) serves as stereotypical toy model that allows analytical insights on a mean-field level.
arXiv Detail & Related papers (2020-01-09T19:20:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.