論文の概要: Fully Bayesian VIB-DeepSSM
- arxiv url: http://arxiv.org/abs/2305.05797v2
- Date: Thu, 20 Jul 2023 16:36:32 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-21 17:57:29.460060
- Title: Fully Bayesian VIB-DeepSSM
- Title(参考訳): 完全ベイズVIB-DeepSSM
- Authors: Jadie Adams and Shireen Elhabian
- Abstract要約: 統計的形状モデリング(SSM)は解剖学的形状の定量的解析を可能にし、臨床診断を行う。
DeepSSMは、アレタリック不確実性定量化画像から解剖学の確率的形状を予測するための、効果的で原則化されたフレームワークである。
完全ベイズVIBの定式化を導出し、2つのスケーラブルな実装手法の有効性を実証する。
合成形状と左房データの実験により、完全ベイズVIBネットワークは精度を犠牲にすることなく不確実性推論を改善した画像からSSMを予測することを示した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Statistical shape modeling (SSM) enables population-based quantitative
analysis of anatomical shapes, informing clinical diagnosis. Deep learning
approaches predict correspondence-based SSM directly from unsegmented 3D images
but require calibrated uncertainty quantification, motivating Bayesian
formulations. Variational information bottleneck DeepSSM (VIB-DeepSSM) is an
effective, principled framework for predicting probabilistic shapes of anatomy
from images with aleatoric uncertainty quantification. However, VIB is only
half-Bayesian and lacks epistemic uncertainty inference. We derive a fully
Bayesian VIB formulation and demonstrate the efficacy of two scalable
implementation approaches: concrete dropout and batch ensemble. Additionally,
we introduce a novel combination of the two that further enhances uncertainty
calibration via multimodal marginalization. Experiments on synthetic shapes and
left atrium data demonstrate that the fully Bayesian VIB network predicts SSM
from images with improved uncertainty reasoning without sacrificing accuracy.
- Abstract(参考訳): 統計的形状モデリング(SSM)は、集団に基づく解剖学的形状の定量的分析を可能にし、臨床診断を行う。
深層学習による3次元画像からの対応ベースssmの予測は不確かさの定量化を必要とするが、ベイズ式化の動機付けは必要である。
変動情報ボトルネックのDeepSSM(VIB-DeepSSM)は,アレータティック不確実性定量化画像から解剖の確率的形状を予測するための,有効で原則化されたフレームワークである。
しかし、VIBは半ベイズ的であり、疫学的な不確実性推論を欠いている。
我々は,完全ベイズ式vibを導出し,スケーラブルな2つの実装手法の有効性を実証する。
さらに,マルチモーダル限界化による不確実性校正をさらに強化する新しい組み合わせを提案する。
合成形状と左房データの実験により、完全ベイズVIBネットワークは精度を犠牲にすることなく不確実性推論を改善した画像からSSMを予測することを示した。
関連論文リスト
- Probabilistic 3D Correspondence Prediction from Sparse Unsegmented Images [1.2179682412409507]
スパース画像データから3次元対応を予測する統一モデルであるSPI-CorrNetを提案する。
LGE MRI左房データセットとAbdomen CT-1K肝データセットを用いた実験により,スパース画像駆動SSMの精度とロバスト性の向上が示された。
論文 参考訳(メタデータ) (2024-07-02T03:56:20Z) - Weakly Supervised Bayesian Shape Modeling from Unsegmented Medical Images [4.424170214926035]
対応型統計形状モデリング(SSM)は、人口レベルの形態計測を容易にする。
ディープラーニングの最近の進歩は、推論においてこのプロセスを合理化している。
我々は,ポイントクラウドを用いた画像からSSMを予測するために,弱い教師付きディープラーニングアプローチを導入する。
論文 参考訳(メタデータ) (2024-05-15T20:47:59Z) - Elongated Physiological Structure Segmentation via Spatial and Scale
Uncertainty-aware Network [28.88756808141357]
本研究では,空間的・大規模不確実性認識ネットワーク(SSU-Net)を提案する。
実験の結果,SSU-Netは角膜内皮細胞と網膜血管の分節機能に優れていた。
論文 参考訳(メタデータ) (2023-05-30T08:57:31Z) - Towards Reliable Medical Image Segmentation by utilizing Evidential Calibrated Uncertainty [52.03490691733464]
本稿では,医療画像セグメンテーションネットワークにシームレスに統合可能な,実装が容易な基礎モデルであるDEviSを紹介する。
主観的論理理論を利用して、医用画像分割の問題に対する確率と不確実性を明示的にモデル化する。
DeviSには不確実性を考慮したフィルタリングモジュールが組み込まれている。
論文 参考訳(メタデータ) (2023-01-01T05:02:46Z) - From Images to Probabilistic Anatomical Shapes: A Deep Variational
Bottleneck Approach [0.0]
3次元医用画像から直接の統計的形状モデリング(SSM)は、病理の検出、疾患の診断、人口レベルの形態解析を行うための未利用のツールである。
本稿では,これらの仮定を緩和するために,変分情報ボトルネック理論に基づく基本的枠組みを提案する。
実験により,提案手法により精度が向上し,校正精度が向上することを確認した。
論文 参考訳(メタデータ) (2022-05-13T19:39:08Z) - Uncertainty-Aware Adaptation for Self-Supervised 3D Human Pose
Estimation [70.32536356351706]
本稿では、2つの出力ヘッドを2つの異なる構成にサブスクライブする共通のディープネットワークバックボーンを構成するMPP-Netを紹介する。
ポーズと関節のレベルで予測の不確実性を定量化するための適切な尺度を導出する。
本稿では,提案手法の総合評価を行い,ベンチマークデータセット上での最先端性能を示す。
論文 参考訳(メタデータ) (2022-03-29T07:14:58Z) - NUQ: Nonparametric Uncertainty Quantification for Deterministic Neural
Networks [151.03112356092575]
本研究では,Nadaraya-Watson の条件付きラベル分布の非パラメトリック推定に基づく分類器の予測の不確かさの測定方法を示す。
種々の実世界の画像データセットにおける不確実性推定タスクにおいて,本手法の強い性能を示す。
論文 参考訳(メタデータ) (2022-02-07T12:30:45Z) - PDC-Net+: Enhanced Probabilistic Dense Correspondence Network [161.76275845530964]
高度確率密度対応ネットワーク(PDC-Net+)は、精度の高い高密度対応を推定できる。
我々は、堅牢で一般化可能な不確実性予測に適したアーキテクチャと強化されたトレーニング戦略を開発する。
提案手法は,複数の挑戦的幾何マッチングと光学的フローデータセットに対して,最先端の結果を得る。
論文 参考訳(メタデータ) (2021-09-28T17:56:41Z) - Probabilistic 3D surface reconstruction from sparse MRI information [58.14653650521129]
スパース2次元MR画像データとアレータティック不確実性予測から3次元表面再構成を同時に行うための新しい確率論的深層学習手法を提案する。
本手法は,3つの準直交MR画像スライスから,限られたトレーニングセットから大きな表面メッシュを再構成することができる。
論文 参考訳(メタデータ) (2020-10-05T14:18:52Z) - Uncertain-DeepSSM: From Images to Probabilistic Shape Models [0.0]
DeepSSMは、非セグメント画像から直接統計的形状表現を抽出するエンドツーエンドのディープラーニングアプローチである。
DeepSSMは、視覚的に正確には仮定できないような、不確実な形状の推定を生成する。
本研究では,ネットワークを適応させて固有入力分散を予測することにより,データ依存型アレータティック不確実性の両方を定量化する統一モデルとして,Uncertain-DeepSSMを提案する。
論文 参考訳(メタデータ) (2020-07-13T17:18:21Z) - Diversity inducing Information Bottleneck in Model Ensembles [73.80615604822435]
本稿では,予測の多様性を奨励することで,ニューラルネットワークの効果的なアンサンブルを生成する問題をターゲットにする。
そこで本研究では,潜伏変数の学習における逆損失の多様性を明示的に最適化し,マルチモーダルデータのモデリングに必要な出力予測の多様性を得る。
最も競争力のあるベースラインと比較して、データ分布の変化の下で、分類精度が大幅に向上した。
論文 参考訳(メタデータ) (2020-03-10T03:10:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。