An Independent Implementation of Quantum Machine Learning Algorithms in Qiskit for Genomic Data
- URL: http://arxiv.org/abs/2405.09781v1
- Date: Thu, 16 May 2024 03:00:41 GMT
- Title: An Independent Implementation of Quantum Machine Learning Algorithms in Qiskit for Genomic Data
- Authors: Navneet Singh, Shiva Raj Pokhrel,
- Abstract summary: We extend algorithms like Quantum Support Vector (QSVC), Pegasosational Quantum Circuits (QSV), and Quantum Neural Networks (QNN) in Qiskit with diverse feature mapping techniques for genomic classification.
- Score: 12.248184406275405
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we explore the power of Quantum Machine Learning as we extend, implement and evaluate algorithms like Quantum Support Vector Classifier (QSVC), Pegasos-QSVC, Variational Quantum Circuits (VQC), and Quantum Neural Networks (QNN) in Qiskit with diverse feature mapping techniques for genomic sequence classification.
Related papers
- A study on B-cell epitope prediction based on QSVM and VQC [0.0]
This study investigates quantum computing's role in B-cell prediction using Quantum Support Vector Machine (QSVM) and Variational Quantum (VQC)
It highlights the potential of quantum machine learning in bioinformatics, addressing computational efficiency limitations of traditional methods as data complexity grows.
arXiv Detail & Related papers (2025-04-16T08:09:34Z) - Quantum Phases Classification Using Quantum Machine Learning with SHAP-Driven Feature Selection [0.0]
We present an innovative methodology to classify quantum phases within the ANNNI (Axial Next-Nearest Neighbor Ising) model.
Our investigation focuses on two prominent QML algorithms: Quantum Support Vector (QSVM) and Variational Quantums (VQC)
The results reveal that both QSVM and VQC exhibit exceptional predictive accuracy when limited to 5 or 6 key features.
arXiv Detail & Related papers (2025-04-14T19:51:26Z) - Tensor-Based Binary Graph Encoding for Variational Quantum Classifiers [3.5051814539447474]
We propose a novel quantum encoding framework for graph classification using Variational Quantums (VQCs)
By constructing slightly more complex circuits tailored for graph encoding, we demonstrate that VQCs can effectively classify graphs within the constraints of current quantum hardware.
arXiv Detail & Related papers (2025-01-24T02:26:21Z) - Quantum Machine Learning: An Interplay Between Quantum Computing and Machine Learning [54.80832749095356]
Quantum machine learning (QML) is a rapidly growing field that combines quantum computing principles with traditional machine learning.
This paper introduces quantum computing for the machine learning paradigm, where variational quantum circuits are used to develop QML architectures.
arXiv Detail & Related papers (2024-11-14T12:27:50Z) - Quantum Subroutine for Variance Estimation: Algorithmic Design and Applications [80.04533958880862]
Quantum computing sets the foundation for new ways of designing algorithms.
New challenges arise concerning which field quantum speedup can be achieved.
Looking for the design of quantum subroutines that are more efficient than their classical counterpart poses solid pillars to new powerful quantum algorithms.
arXiv Detail & Related papers (2024-02-26T09:32:07Z) - QNEAT: Natural Evolution of Variational Quantum Circuit Architecture [95.29334926638462]
We focus on variational quantum circuits (VQC), which emerged as the most promising candidates for the quantum counterpart of neural networks.
Although showing promising results, VQCs can be hard to train because of different issues, e.g., barren plateau, periodicity of the weights, or choice of architecture.
We propose a gradient-free algorithm inspired by natural evolution to optimize both the weights and the architecture of the VQC.
arXiv Detail & Related papers (2023-04-14T08:03:20Z) - TeD-Q: a tensor network enhanced distributed hybrid quantum machine
learning framework [59.07246314484875]
TeD-Q is an open-source software framework for quantum machine learning.
It seamlessly integrates classical machine learning libraries with quantum simulators.
It provides a graphical mode in which the quantum circuit and the training progress can be visualized in real-time.
arXiv Detail & Related papers (2023-01-13T09:35:05Z) - QuanGCN: Noise-Adaptive Training for Robust Quantum Graph Convolutional
Networks [124.7972093110732]
We propose quantum graph convolutional networks (QuanGCN), which learns the local message passing among nodes with the sequence of crossing-gate quantum operations.
To mitigate the inherent noises from modern quantum devices, we apply sparse constraint to sparsify the nodes' connections.
Our QuanGCN is functionally comparable or even superior than the classical algorithms on several benchmark graph datasets.
arXiv Detail & Related papers (2022-11-09T21:43:16Z) - Learning capability of parametrized quantum circuits [2.51657752676152]
Variational quantum algorithms (VQAs) and their applications in the field of quantum machine learning through parametrized quantum circuits (PQCs) are thought to be one major way of leveraging noisy intermediate-scale quantum computing devices.
In this paper, we build upon the work by Schuld et al. and compare popular ans"atze for PQCs through the new measure of learning capability.
We also examine dissipative quantum neural networks (dQNN) as introduced by Beer et al. and propose a data re-upload structure for dQNNs to increase their learning capability.
arXiv Detail & Related papers (2022-09-21T13:26:20Z) - Universal expressiveness of variational quantum classifiers and quantum
kernels for support vector machines [0.0]
We show that variational quantum classifiers (VQC) and support vector machines with quantum kernels (QSVM) can solve a classification problem based on the k-Forrelation problem.
Our results imply that there exists a feature map and a quantum kernel that make VQC and QSVM efficient solvers for any BQP problem.
arXiv Detail & Related papers (2022-07-12T22:03:31Z) - Investigation of Quantum Support Vector Machine for Classification in
NISQ era [0.0]
We investigate quantum support vector machine (QSVM) algorithm and its circuit version on present quantum computers.
We compute the efficiency of the QSVM circuit implementation method by encoding training and testing data sample in quantum circuits.
We highlight the technical difficulties one would face while applying the QSVM algorithm on current NISQ era devices.
arXiv Detail & Related papers (2021-12-13T18:59:39Z) - QTN-VQC: An End-to-End Learning framework for Quantum Neural Networks [71.14713348443465]
We introduce a trainable quantum tensor network (QTN) for quantum embedding on a variational quantum circuit (VQC)
QTN enables an end-to-end parametric model pipeline, namely QTN-VQC, from the generation of quantum embedding to the output measurement.
Our experiments on the MNIST dataset demonstrate the advantages of QTN for quantum embedding over other quantum embedding approaches.
arXiv Detail & Related papers (2021-10-06T14:44:51Z) - Neural Predictor based Quantum Architecture Search [15.045985536395479]
Variational quantum algorithms (VQAs) are widely speculated to deliver quantum advantages for practical problems under the quantum-classical hybrid computational paradigm in the near term.
In this work, we propose to use a neural network based predictor as the evaluation policy for quantum architecture search (QAS)
arXiv Detail & Related papers (2021-03-11T08:26:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.