Scalable Timing Coordination of Bell State Analyzers in Quantum Networks
- URL: http://arxiv.org/abs/2405.09881v1
- Date: Thu, 16 May 2024 08:05:15 GMT
- Title: Scalable Timing Coordination of Bell State Analyzers in Quantum Networks
- Authors: Yoshihiro Mori, Toshihiko Sasaki, Rikizo Ikuta, Kentaro Teramoto, Hiroyuki Ohno, Michal HajduĊĦek, Rodney Van Meter, Shota Nagayama,
- Abstract summary: The optical Bell State Analyzer plays a key role in the optical generation of entanglement in quantum networks.
It is unclear whether timing synchronization is possible even in multi-hop and complex large-scale networks, and if so, how efficient it is.
We first focus on the exchange of entanglement between two network nodes via a BSA, especially effective methods of optical path coordination.
We also discuss the effect of quantum memory, given that end-to-end extension of entangled states through multi-node entanglement exchange is essential for the practical application of quantum networks.
- Score: 0.3613661942047476
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The optical Bell State Analyzer (BSA) plays a key role in the optical generation of entanglement in quantum networks. The optical BSA is effective in controlling the timing of arriving photons to achieve interference. It is unclear whether timing synchronization is possible even in multi-hop and complex large-scale networks, and if so, how efficient it is. We investigate the scalability of BSA synchronization mechanisms over multiple hops for quantum networks both with and without memory in each node. We first focus on the exchange of entanglement between two network nodes via a BSA, especially effective methods of optical path coordination in achieving the simultaneous arrival of photons at the BSA. In optical memoryless quantum networks, including repeater graph state networks, we see that the quantum optical path coordination works well, though some possible timing coordination mechanisms have effects that cascade to adjacent links and beyond, some of which was not going to work well of timing coordination. We also discuss the effect of quantum memory, given that end-to-end extension of entangled states through multi-node entanglement exchange is essential for the practical application of quantum networks. Finally, cycles of all-optical links in the network topology are shown to may not be to synchronize, this property should be taken into account when considering synchronization in large networks.
Related papers
- Metropolitan-scale heralded entanglement of solid-state qubits [0.0]
We report on heralded entanglement between two independently operated quantum network nodes separated by 10km.
We minimize the effects of fiber photon loss by quantum frequency conversion of the qubit-stabilized photons to the telecom L-band.
We demonstrate the delivery of a predefined entangled state on the nodes irrespective of the heralding detection pattern.
arXiv Detail & Related papers (2024-04-04T18:00:01Z) - Dual epitaxial telecom spin-photon interfaces with correlated long-lived
coherence [0.0]
Trivalent erbium dopants emerge as a compelling candidate with their telecom C band emission and shielded 4f intra-shell spin-optical transitions.
We demonstrate dual erbium telecom spin-photon interfaces in an epitaxial thin-film platform via wafer-scale bottom-up synthesis.
arXiv Detail & Related papers (2023-10-11T01:40:04Z) - Hyper-entanglement between pulse modes and frequency bins [101.18253437732933]
Hyper-entanglement between two or more photonic degrees of freedom (DOF) can enhance and enable new quantum protocols.
We demonstrate the generation of photon pairs hyper-entangled between pulse modes and frequency bins.
arXiv Detail & Related papers (2023-04-24T15:43:08Z) - Simulation of Entanglement Generation between Absorptive Quantum
Memories [56.24769206561207]
We use the open-source Simulator of QUantum Network Communication (SeQUeNCe), developed by our team, to simulate entanglement generation between two atomic frequency comb (AFC) absorptive quantum memories.
We realize the representation of photonic quantum states within truncated Fock spaces in SeQUeNCe.
We observe varying fidelity with SPDC source mean photon number, and varying entanglement generation rate with both mean photon number and memory mode number.
arXiv Detail & Related papers (2022-12-17T05:51:17Z) - QuanGCN: Noise-Adaptive Training for Robust Quantum Graph Convolutional
Networks [124.7972093110732]
We propose quantum graph convolutional networks (QuanGCN), which learns the local message passing among nodes with the sequence of crossing-gate quantum operations.
To mitigate the inherent noises from modern quantum devices, we apply sparse constraint to sparsify the nodes' connections.
Our QuanGCN is functionally comparable or even superior than the classical algorithms on several benchmark graph datasets.
arXiv Detail & Related papers (2022-11-09T21:43:16Z) - Cavity-enhanced quantum network nodes [0.0]
A future quantum network will consist of quantum processors that are connected by quantum channels.
I will describe how optical resonators facilitate quantum network nodes.
arXiv Detail & Related papers (2022-05-30T18:50:35Z) - Picosecond synchronization system for quantum networks [0.0]
We demonstrate a 200 MHz clock-rate fiber optic-based quantum network using off-the-shelf components combined with custom-made electronics and telecommunication C-band photons.
Our demonstration sheds light on the role of noise in quantum communication and represents a key step in realizing co-existing classical-quantum networks.
arXiv Detail & Related papers (2022-03-07T04:38:28Z) - Storage and analysis of light-matter entanglement in a fibre-integrated
system [48.7576911714538]
We demonstrate a fiber-integrated quantum memory entangled with a photon at telecommunication wavelength.
The storage device is based on a fiber-pigtailed laser written waveguide in a rare-earth doped solid and allows an all-fiber stable adressing of the memory.
Our results feature orders of magnitude advances in terms of storage time and efficiency for integrated storage of light-matter entanglement, and constitute a significant step forward towards quantum networks using integrated devices.
arXiv Detail & Related papers (2022-01-10T14:28:04Z) - Distributing Multipartite Entanglement over Noisy Quantum Networks [0.0]
A quantum internet aims at harnessing networked quantum technologies, namely by distributing bipartite entanglement between distant nodes.
We present an algorithm for generating multipartite entanglement between different nodes of a quantum network with noisy quantum repeaters and imperfect quantum memories.
arXiv Detail & Related papers (2021-03-26T22:48:05Z) - Enhancing nonclassical bosonic correlations in a Quantum Walk network
through experimental control of disorder [50.591267188664666]
We experimentally realize a controllable inhomogenous Quantum Walk dynamics.
We observe two photon states which exhibit an enhancement in the quantum correlations between two modes of the network.
arXiv Detail & Related papers (2021-02-09T10:57:00Z) - Telecom-heralded entanglement between remote multimode solid-state
quantum memories [55.41644538483948]
Future quantum networks will enable the distribution of entanglement between distant locations and allow applications in quantum communication, quantum sensing and distributed quantum computation.
Here we report the demonstration of heralded entanglement between two spatially separated quantum nodes, where the entanglement is stored in multimode solid-state quantum memories.
We also show that the generated entanglement is robust against loss in the heralding path, and demonstrate temporally multiplexed operation, with 62 temporal modes.
arXiv Detail & Related papers (2021-01-13T14:31:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.