Distributing Multipartite Entanglement over Noisy Quantum Networks
- URL: http://arxiv.org/abs/2103.14759v3
- Date: Mon, 6 Feb 2023 19:00:03 GMT
- Title: Distributing Multipartite Entanglement over Noisy Quantum Networks
- Authors: Lu\'is Bugalho, Bruno C. Coutinho, Francisco A. Monteiro, Yasser Omar
- Abstract summary: A quantum internet aims at harnessing networked quantum technologies, namely by distributing bipartite entanglement between distant nodes.
We present an algorithm for generating multipartite entanglement between different nodes of a quantum network with noisy quantum repeaters and imperfect quantum memories.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A quantum internet aims at harnessing networked quantum technologies, namely
by distributing bipartite entanglement between distant nodes. However,
multipartite entanglement between the nodes may empower the quantum internet
for additional or better applications for communications, sensing, and
computation. In this work, we present an algorithm for generating multipartite
entanglement between different nodes of a quantum network with noisy quantum
repeaters and imperfect quantum memories, where the links are entangled pairs.
Our algorithm is optimal for GHZ states with 3 qubits, maximising
simultaneously the final state fidelity and the rate of entanglement
distribution. Furthermore, we determine the conditions yielding this
simultaneous optimality for GHZ states with a higher number of qubits, and for
other types of multipartite entanglement. Our algorithm is general also in the
sense that it can optimise simultaneously arbitrary parameters. This work opens
the way to optimally generate multipartite quantum correlations over noisy
quantum networks, an important resource for distributed quantum technologies.
Related papers
- The multimode conditional quantum Entropy Power Inequality and the squashed entanglement of the extreme multimode bosonic Gaussian channels [53.253900735220796]
Inequality determines the minimum conditional von Neumann entropy of the output of the most general linear mixing of bosonic quantum modes.
Bosonic quantum systems constitute the mathematical model for the electromagnetic radiation in the quantum regime.
arXiv Detail & Related papers (2024-10-18T13:59:50Z) - Multipartite Entanglement for Multi-node Quantum Networks [0.0]
Scaling the number of entangled nodes in a quantum network is a challenge with significant implications for quantum computing, clock synchronisation, secure communications, and quantum sensing.
Here, we analyse various schemes that achieve multipartite entanglement between nodes in a single step, bypassing the need for multiple rounds of bipartite entanglement.
We demonstrate that different schemes can produce distinct multipartite entangled states, with varying fidelity and generation rates.
arXiv Detail & Related papers (2024-07-31T20:23:28Z) - Entanglement distribution based on quantum walk in arbitrary quantum networks [6.37705397840332]
We develop a series of scheme for generating high-dimensional entangled states via quantum walks with multiple coins or single coin.
We also give entanglement distribution schemes on arbitrary quantum networks according to the above theoretical framework.
Our work can serve as a building block for constructing larger and more complex quantum networks.
arXiv Detail & Related papers (2024-07-05T08:26:41Z) - A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
We introduce a collaborative classical-quantum architecture called co-TenQu.
Co-TenQu enhances a classical deep neural network by up to 41.72% in a fair setting.
It outperforms other quantum-based methods by up to 1.9 times and achieves similar accuracy while utilizing 70.59% fewer qubits.
arXiv Detail & Related papers (2024-02-23T14:09:41Z) - QuanGCN: Noise-Adaptive Training for Robust Quantum Graph Convolutional
Networks [124.7972093110732]
We propose quantum graph convolutional networks (QuanGCN), which learns the local message passing among nodes with the sequence of crossing-gate quantum operations.
To mitigate the inherent noises from modern quantum devices, we apply sparse constraint to sparsify the nodes' connections.
Our QuanGCN is functionally comparable or even superior than the classical algorithms on several benchmark graph datasets.
arXiv Detail & Related papers (2022-11-09T21:43:16Z) - Optimal quantum control via genetic algorithms for quantum state
engineering in driven-resonator mediated networks [68.8204255655161]
We employ a machine learning-enabled approach to quantum state engineering based on evolutionary algorithms.
We consider a network of qubits -- encoded in the states of artificial atoms with no direct coupling -- interacting via a common single-mode driven microwave resonator.
We observe high quantum fidelities and resilience to noise, despite the algorithm being trained in the ideal noise-free setting.
arXiv Detail & Related papers (2022-06-29T14:34:00Z) - Distribution of Quantum Circuits Over General Quantum Networks [3.7344608362649505]
Near-term quantum computers can hold only a small number of qubits.
One way to facilitate large-scale quantum computations is through a distributed network of quantum computers.
We consider the problem of distributing quantum programs across a quantum network of heterogeneous quantum computers.
arXiv Detail & Related papers (2022-06-13T19:30:48Z) - Cavity-enhanced quantum network nodes [0.0]
A future quantum network will consist of quantum processors that are connected by quantum channels.
I will describe how optical resonators facilitate quantum network nodes.
arXiv Detail & Related papers (2022-05-30T18:50:35Z) - Genuinely Multipartite Entanglement vias Shallow Quantum Circuits [0.0]
We prove any genuinely multipartite entanglement on finite-dimensional spaces can be generated by using 2-layer shallow quantum circuit.
We propose a semi-device-independent entanglement model depending on the local connection ability.
Results show new insights for the multipartite entanglement, quantum network, and measurement-based quantum computation.
arXiv Detail & Related papers (2022-04-20T07:41:30Z) - Efficient Bipartite Entanglement Detection Scheme with a Quantum
Adversarial Solver [89.80359585967642]
Proposal reformulates the bipartite entanglement detection as a two-player zero-sum game completed by parameterized quantum circuits.
We experimentally implement our protocol on a linear optical network and exhibit its effectiveness to accomplish the bipartite entanglement detection for 5-qubit quantum pure states and 2-qubit quantum mixed states.
arXiv Detail & Related papers (2022-03-15T09:46:45Z) - Purification and Entanglement Routing on Quantum Networks [55.41644538483948]
A quantum network equipped with imperfect channel fidelities and limited memory storage time can distribute entanglement between users.
We introduce effectives enabling fast path-finding algorithms for maximizing entanglement shared between two nodes on a quantum network.
arXiv Detail & Related papers (2020-11-23T19:00:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.