Investigation of Rare-Earth Ion-Photon Interaction and Strong Coupling in Optical Microcavities
- URL: http://arxiv.org/abs/2504.09863v1
- Date: Mon, 14 Apr 2025 04:19:17 GMT
- Title: Investigation of Rare-Earth Ion-Photon Interaction and Strong Coupling in Optical Microcavities
- Authors: Quanshen Shen, Wentao Ji, Junyu Guan, Li Qian, Zihua Chai, ChangKui Duan, Ya Wang, Kangwei Xia,
- Abstract summary: This work proposes a scheme to realize an on-chip quantum network by coupling rare-earth ions to microcavities.<n>As an extension of this approach, the coupled system efficiently achieves the quantum entanglement of local and flying qubits.
- Score: 2.3123134450601412
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The strong coupling between an emitter and a cavity is significant for advancing quantum networks. Due to their long optical and spin coherence times, rare-earth ions (REIs) represent a compelling platform for quantum networks. However, their inherently weak intra-4f optical transitions typically result in low coupling strength, thus restricting most current achievements to the weak coupling regime. This work proposes a scheme to realize an on-chip quantum network by coupling REIs to high-quality whispering gallery mode (WGM) microcavities. Additionally, we provide numerical validation for a parametric amplification technique to enhance the emitter-cavity coupling strength. As an extension of this approach, the coupled system efficiently achieves the quantum entanglement of local and flying qubits. This study deepens the understanding of emitter-cavity interactions and contributes to realizing REIs-based photonic platforms, which are crucial to distributed quantum computing and developing robust quantum networks.
Related papers
- Simulating the Quantum Rabi Model in Superconducting Qubits at Deep
Strong Coupling [0.8363593384698137]
We address the challenge of achieving deep strong coupling in Quantum Cavity Electrodynamics (cQED).
Our focus is on a transformative digital quantum simulation, employing Trotterization with an augmented number of steps to deconstruct a complex unitary Hamiltonian.
Our goal is to demonstrate deep strong coupling in cQED and understand the advantages of digital methods, particularly in coherent measurement during time evolution with varying photon counts in resonators.
arXiv Detail & Related papers (2024-02-10T14:09:11Z) - Dual epitaxial telecom spin-photon interfaces with correlated long-lived
coherence [0.0]
Trivalent erbium dopants emerge as a compelling candidate with their telecom C band emission and shielded 4f intra-shell spin-optical transitions.
We demonstrate dual erbium telecom spin-photon interfaces in an epitaxial thin-film platform via wafer-scale bottom-up synthesis.
arXiv Detail & Related papers (2023-10-11T01:40:04Z) - Robust excitation of C-band quantum dots for quantum communication [0.0]
We experimentally demonstrate how varying the pump energy and spectral detuning can improve quantum-secured communication rates.
These findings have significant implications for general implementations of QD single-photon sources in practical quantum communication networks.
arXiv Detail & Related papers (2023-05-22T17:35:18Z) - Neural-network quantum states for ultra-cold Fermi gases [49.725105678823915]
This work introduces a novel Pfaffian-Jastrow neural-network quantum state that includes backflow transformation based on message-passing architecture.
We observe the emergence of strong pairing correlations through the opposite-spin pair distribution functions.
Our findings suggest that neural-network quantum states provide a promising strategy for studying ultra-cold Fermi gases.
arXiv Detail & Related papers (2023-05-15T17:46:09Z) - Simulation of Entanglement Generation between Absorptive Quantum
Memories [56.24769206561207]
We use the open-source Simulator of QUantum Network Communication (SeQUeNCe), developed by our team, to simulate entanglement generation between two atomic frequency comb (AFC) absorptive quantum memories.
We realize the representation of photonic quantum states within truncated Fock spaces in SeQUeNCe.
We observe varying fidelity with SPDC source mean photon number, and varying entanglement generation rate with both mean photon number and memory mode number.
arXiv Detail & Related papers (2022-12-17T05:51:17Z) - Enhancing Quantum Annealing via entanglement distribution [1.1470070927586018]
Quantum Annealing has proven to be a powerful tool to tackle several optimization problems.
Its performance is severely impacted by the limited connectivity of the underlying quantum hardware.
We present a novel approach to address these issues, by describing a method to implement non-local couplings.
arXiv Detail & Related papers (2022-12-05T18:18:58Z) - QuanGCN: Noise-Adaptive Training for Robust Quantum Graph Convolutional
Networks [124.7972093110732]
We propose quantum graph convolutional networks (QuanGCN), which learns the local message passing among nodes with the sequence of crossing-gate quantum operations.
To mitigate the inherent noises from modern quantum devices, we apply sparse constraint to sparsify the nodes' connections.
Our QuanGCN is functionally comparable or even superior than the classical algorithms on several benchmark graph datasets.
arXiv Detail & Related papers (2022-11-09T21:43:16Z) - Cavity-enhanced quantum network nodes [0.0]
A future quantum network will consist of quantum processors that are connected by quantum channels.
I will describe how optical resonators facilitate quantum network nodes.
arXiv Detail & Related papers (2022-05-30T18:50:35Z) - Quantum Semantic Communications for Resource-Efficient Quantum Networking [52.3355619190963]
This letter proposes a novel quantum semantic communications (QSC) framework exploiting advancements in quantum machine learning and quantum semantic representations.
The proposed framework achieves approximately 50-75% reduction in quantum communication resources needed, while achieving a higher quantum semantic fidelity.
arXiv Detail & Related papers (2022-05-05T03:49:19Z) - Entangling Quantum Generative Adversarial Networks [53.25397072813582]
We propose a new type of architecture for quantum generative adversarial networks (entangling quantum GAN, EQ-GAN)
We show that EQ-GAN has additional robustness against coherent errors and demonstrate the effectiveness of EQ-GAN experimentally in a Google Sycamore superconducting quantum processor.
arXiv Detail & Related papers (2021-04-30T20:38:41Z) - Entanglement Classification via Neural Network Quantum States [58.720142291102135]
In this paper we combine machine-learning tools and the theory of quantum entanglement to perform entanglement classification for multipartite qubit systems in pure states.
We use a parameterisation of quantum systems using artificial neural networks in a restricted Boltzmann machine (RBM) architecture, known as Neural Network Quantum States (NNS)
arXiv Detail & Related papers (2019-12-31T07:40:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.