Quantum Metrology with Higher-order Exceptional Points in Atom-cavity Magnonics
- URL: http://arxiv.org/abs/2405.09899v2
- Date: Mon, 28 Oct 2024 13:39:08 GMT
- Title: Quantum Metrology with Higher-order Exceptional Points in Atom-cavity Magnonics
- Authors: Minwei Shi, Guzhi Bao, Jinxian Guo, Weiping Zhang,
- Abstract summary: We propose a protocol for quantum metrology with the construction of higher-order EPs (HOEPs) in atom-cavity system.
A general analysis is exhibited for the construction of arbitrary $n$-th order EP (EPn)
We unveil the mechanism behind the sensitivity enhancement from HOEPs.
- Score: 2.039299481036676
- License:
- Abstract: Exceptional points (EPs), early arising from non-Hermitian physics, significantly amplify the system's response to minor perturbations, and act as a useful concept to enhance measurement in metrology. In particular, such a metrological enhancement grows dramatically with the EP's order. However, the Langevin noises intrinsically existing in the non-Hermitian systems diminish this enhancement. In this study, we propose a protocol for quantum metrology with the construction of higher-order EPs (HOEPs) in atom-cavity system through Hermitian magnon-photon interaction. The construction of HOEPs utilizes the atom-cavity non-Hermitian-like dynamical behavior but avoids the external Langevin noises via the Hermitian interaction. A general analysis is exhibited for the construction of arbitrary $n$-th order EP (EPn). As a demonstration of the superiority of these HOEPs in quantum metrology, we work out an EP3/4-based atomic sensor with sensitivity being orders of magnitude higher than that achievable in an EP2-based one. We further unveil the mechanism behind the sensitivity enhancement from HOEPs. The experimental establishment for this proposal is suggested with potential candidates. This EP-based atomic sensor, taking advantage of the atom-light interface, offers new insight into quantum metrology with HOEPs.
Related papers
- Transport properties and quantum phase transitions in one-dimensional superconductor-ferromagnetic insulator heterostructures [44.99833362998488]
We propose a one-dimensional electronic nanodevice inspired in recently fabricated semiconductor-superconductor-ferromagnetic insulator hybrids.
We show that the device can be tuned across spin- and fermion parity-changing QPTs by adjusting the FMI layer length orange and/or by applying a global backgate voltage.
Our findings suggest that these effects are experimentally accessible and offer a robust platform for studying quantum phase transitions in hybrid nanowires.
arXiv Detail & Related papers (2024-10-18T22:25:50Z) - Thermalization and Criticality on an Analog-Digital Quantum Simulator [133.58336306417294]
We present a quantum simulator comprising 69 superconducting qubits which supports both universal quantum gates and high-fidelity analog evolution.
We observe signatures of the classical Kosterlitz-Thouless phase transition, as well as strong deviations from Kibble-Zurek scaling predictions.
We digitally prepare the system in pairwise-entangled dimer states and image the transport of energy and vorticity during thermalization.
arXiv Detail & Related papers (2024-05-27T17:40:39Z) - Non-resonant electric quantum control of individual on-surface spins [41.94295877935867]
Quantum control techniques play an important role in manipulating and harnessing the properties of different quantum systems.
We propose to achieve quantum control over a single on-surface atomic spin using Landau-Zener-St"uckelberg-Majorana (LZSM) interferometry.
arXiv Detail & Related papers (2024-04-29T18:23:30Z) - Third-order exceptional line in a nitrogen-vacancy spin system [12.88459291396421]
The exceptional points (EPs) aroused from the non-Hermiticity bring rich phenomena, such as exceptional nodal topologies, unidirectional invisibility, single-mode lasing, sensitivity enhancement and energy harvesting.
Recently, high-order EP geometries are predicted to provide richer phenomena and advantages over stand-alone high-order EPs.
By introducing multiple symmetries, the emergence of the third-order exceptional line (EL) has been successfully realized with a single electron spin of nitrogen-vacancy center in diamond.
arXiv Detail & Related papers (2024-01-18T02:42:40Z) - Observation of Exceptional Points in Thermal Atomic Ensembles [8.775696647310692]
Exceptional points (EPs) in non-Hermitian systems have spawned intriguing prospects for enhanced sensing.
We experimentally observe EPs in multi-level thermal atomic ensembles, and realize enhanced sensing of magnetic field for one order of magnitude.
arXiv Detail & Related papers (2023-04-14T08:14:16Z) - First design of a superconducting qubit for the QUB-IT experiment [50.591267188664666]
The goal of the QUB-IT project is to realize an itinerant single-photon counter exploiting Quantum Non Demolition (QND) measurements and entangled qubits.
We present the design and simulation of the first superconducting device consisting of a transmon qubit coupled to a resonator using Qiskit-Metal.
arXiv Detail & Related papers (2022-07-18T07:05:10Z) - Higher-order exceptional point in a blue-detuned non-Hermitian cavity
optomechanical system [5.001077638364239]
We propose a non-Hermitian three-mode optomechanical system in the blue-sideband regime for predicting the third-order EP (EP3)
For the gain (loss) MR, we find only two degenerate EP3s or EP2s can be predicted by tuning enhanced coupling strength.
Our proposal provides a potential way to predict higher-order EPs or multiple EP2s and study multimode quantum squeezing around EPs.
arXiv Detail & Related papers (2022-05-15T05:20:59Z) - Higher-order exceptional point in a pseudo-Hermitian cavity
optomechanical system [4.4623066415671895]
We propose a benchmark cavity optomechanical (COM) system consisting of a mechanical resonator (MR) coupled to two cavities via radiation pressure for predicting the third-order exceptional point (EP3)
Our proposal provides a potential way to realize sensitive detection and study other physical phenomena around higher-order EP3 in non-Hermitian COM systems.
arXiv Detail & Related papers (2021-09-24T23:24:15Z) - Enhanced nonlinear quantum metrology with weakly coupled solitons and
particle losses [58.720142291102135]
We offer an interferometric procedure for phase parameters estimation at the Heisenberg (up to 1/N) and super-Heisenberg scaling levels.
The heart of our setup is the novel soliton Josephson Junction (SJJ) system providing the formation of the quantum probe.
We illustrate that such states are close to the optimal ones even with moderate losses.
arXiv Detail & Related papers (2021-08-07T09:29:23Z) - Observation of exceptional point in a PT broken non-Hermitian system
simulated using a quantum circuit [3.3229068574143534]
We propose an extendable method to simulate non-Hermitian systems on the quantum circuits.
Our model is capable of simulating large scale systems with higher-order EPs.
arXiv Detail & Related papers (2020-05-28T07:59:58Z) - Waveguide Quantum Electrodynamics with Giant Superconducting Artificial
Atoms [40.456646238780195]
We employ an alternative architecture that realizes a giant atom by coupling small atoms to a waveguide at multiple, but well separated, discrete locations.
Our realization of giant atoms enables tunable atom-waveguide couplings with large on-off ratios and a coupling spectrum that can be engineered by device design.
arXiv Detail & Related papers (2019-12-27T16:45:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.