Observation of Exceptional Points in Thermal Atomic Ensembles
- URL: http://arxiv.org/abs/2304.06985v2
- Date: Thu, 29 Jun 2023 02:31:19 GMT
- Title: Observation of Exceptional Points in Thermal Atomic Ensembles
- Authors: Chao Liang and Yuanjiang Tang and An-Ning Xu and Yong-Chun Liu
- Abstract summary: Exceptional points (EPs) in non-Hermitian systems have spawned intriguing prospects for enhanced sensing.
We experimentally observe EPs in multi-level thermal atomic ensembles, and realize enhanced sensing of magnetic field for one order of magnitude.
- Score: 8.775696647310692
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Exceptional points (EPs) in non-Hermitian systems have recently attracted
wide interests and spawned intriguing prospects for enhanced sensing. However,
EPs have not yet been realized in thermal atomic ensembles, which is one of the
most important platforms for quantum sensing. Here we experimentally observe
EPs in multi-level thermal atomic ensembles, and realize enhanced sensing of
magnetic field for one order of magnitude. We take advantage of the rich energy
levels of atoms and construct effective decays for selected energy levels by
employing laser coupling with the excited state, yielding unbalanced decay
rates for different energy levels, which finally results in the existence of
EPs. Furthermore, we propose the optical polarization rotation measurement
scheme to detect the splitting of the resonance peaks, which makes use of both
the absorption and dispersion properties, and shows advantage with enhanced
splitting compared with the conventional transmission measurement scheme.
Besides, in our system both the effective coupling strength and decay rates are
flexibly adjustable, and thus the position of the EPs are tunable, which
expands the measurement range. Our work not only provides a new controllable
platform for studying EPs and non-Hermitian physics, but also provide new ideas
for the design of EP-enhanced sensors and opens up realistic opportunities for
practical applications in the high-precision sensing of magnetic field and
other physical quantities.
Related papers
- Exceptional-Point-Induced Nonequilibrium Entanglement Dynamics in Bosonic Networks [0.0]
We investigate how exceptional points (EPs) control multimode entanglement in bosonic chains.
Our findings provide a pathway to leveraging EPs for entanglement control and exhibit the potential of non-Hermitian physics in advancing quantum technologies.
arXiv Detail & Related papers (2025-02-07T03:52:29Z) - Enhancement of sensitivity near exceptional points in dissipative qubit-resonator systems [10.877863413220087]
We propose and demonstrate a protocol for realizing non-Hermitian quantum sensors for probing the coupling between a qubit and a resonator subjecting to energy dissipations.
The excitation-number conversion associated with the no-jump evolution trajectory enables removal of the noisy outcomes with quantum jumps.
The sensitivity enhancement near the exceptional point is confirmed by both theoretical calculation and experimental measurement.
arXiv Detail & Related papers (2025-01-27T04:36:57Z) - A New Bite Into Dark Matter with the SNSPD-Based QROCODILE Experiment [55.46105000075592]
We present the first results from the Quantum Resolution-d Cryogenic Observatory for Dark matter Incident at Low Energy (QROCODILE)
The QROCODILE experiment uses a microwire-based superconducting nanowire single-photon detector (SNSPD) as a target and sensor for dark matter scattering and absorption.
We report new world-leading constraints on the interactions of sub-MeV dark matter particles with masses as low as 30 keV.
arXiv Detail & Related papers (2024-12-20T19:00:00Z) - Quantum Metrology with Higher-order Exceptional Points in Atom-cavity Magnonics [2.039299481036676]
We propose a protocol for quantum metrology with the construction of higher-order EPs (HOEPs) in atom-cavity system.
A general analysis is exhibited for the construction of arbitrary $n$-th order EP (EPn)
We unveil the mechanism behind the sensitivity enhancement from HOEPs.
arXiv Detail & Related papers (2024-05-16T08:43:35Z) - All-Optical Nuclear Quantum Sensing using Nitrogen-Vacancy Centers in
Diamond [52.77024349608834]
Microwave or radio-frequency driving poses a significant limitation for miniaturization, energy-efficiency and non-invasiveness of quantum sensors.
We overcome this limitation by demonstrating a purely optical approach to coherent quantum sensing.
Our results pave the way for highly compact quantum sensors to be employed for magnetometry or gyroscopy applications.
arXiv Detail & Related papers (2022-12-14T08:34:11Z) - Sensing of magnetic field effects in radical-pair reactions using a
quantum sensor [50.591267188664666]
Magnetic field effects (MFE) in certain chemical reactions have been well established in the last five decades.
We employ elaborate and realistic models of radical-pairs, considering its coupling to the local spin environment and the sensor.
For two model systems, we derive signals of MFE detectable even in the weak coupling regime between radical-pair and NV quantum sensor.
arXiv Detail & Related papers (2022-09-28T12:56:15Z) - Realization of exceptional points along a synthetic orbital angular
momentum dimension [6.459947581214227]
Exceptional points (EPs) are unique spectral features of Non-Hermiticity (NH) systems.
We experimentally demonstrate the appearance of paired EPs in a periodical driven degenerate optical cavity.
arXiv Detail & Related papers (2022-09-16T07:54:34Z) - Electromagnetically induced transparency in inhomogeneously broadened
divacancy defect ensembles in SiC [52.74159341260462]
Electromagnetically induced transparency (EIT) is a phenomenon that can provide strong and robust interfacing between optical signals and quantum coherence of electronic spins.
We show that EIT can be established with high visibility also in this material platform upon careful design of the measurement geometry.
Our work provides an understanding of EIT in multi-level systems with significant inhomogeneities, and our considerations are valid for a wide array of defects in semiconductors.
arXiv Detail & Related papers (2022-03-18T11:22:09Z) - Visualizing spinon Fermi surfaces with time-dependent spectroscopy [62.997667081978825]
We propose applying time-dependent photo-emission spectroscopy, an established tool in solid state systems, in cold atom quantum simulators.
We show in exact diagonalization simulations of the one-dimensional $t-J$ model that the spinons start to populate previously unoccupied states in an effective band structure.
The dependence of the spectral function on the time after the pump pulse reveals collective interactions among spinons.
arXiv Detail & Related papers (2021-05-27T18:00:02Z) - Controlled coherent dynamics of [VO(TPP)], a prototype molecular nuclear
qudit with an electronic ancilla [50.002949299918136]
We show that [VO(TPP)] (vanadyl tetraphenylporphyrinate) is a promising system suitable to implement quantum computation algorithms.
It embeds an electronic spin 1/2 coupled through hyperfine interaction to a nuclear spin 7/2, both characterized by remarkable coherence.
arXiv Detail & Related papers (2021-03-15T21:38:41Z) - Observation of exceptional point in a PT broken non-Hermitian system
simulated using a quantum circuit [3.3229068574143534]
We propose an extendable method to simulate non-Hermitian systems on the quantum circuits.
Our model is capable of simulating large scale systems with higher-order EPs.
arXiv Detail & Related papers (2020-05-28T07:59:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.