論文の概要: MiniMaxAD: A Lightweight Autoencoder for Feature-Rich Anomaly Detection
- arxiv url: http://arxiv.org/abs/2405.09933v1
- Date: Thu, 16 May 2024 09:37:54 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-17 14:41:48.000565
- Title: MiniMaxAD: A Lightweight Autoencoder for Feature-Rich Anomaly Detection
- Title(参考訳): MiniMaxAD: 特徴リッチ異常検出のための軽量オートエンコーダ
- Authors: Fengjie Wang, Chengming Liu, Lei Shi, Pang Haibo,
- Abstract要約: MiniMaxADは、通常の画像から広範囲の情報を効率よく圧縮・記憶する軽量オートエンコーダである。
本モデルは,Global Response Normalization (GRN) ユニットを備えた大規模なカーネル畳み込みネットワークを利用し,マルチスケールな特徴再構築戦略を採用している。
- 参考スコア(独自算出の注目度): 1.7234530131333607
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Previous unsupervised anomaly detection (UAD) methods often struggle with significant intra-class diversity; i.e., a class in a dataset contains multiple subclasses, which we categorize as Feature-Rich Anomaly Detection Datasets (FRADs). This is evident in applications such as unified setting and unmanned supermarket scenarios. To address this challenge, we developed MiniMaxAD: a lightweight autoencoder designed to efficiently compress and memorize extensive information from normal images. Our model utilizes a large kernel convolutional network equipped with a Global Response Normalization (GRN) unit and employs a multi-scale feature reconstruction strategy. The GRN unit significantly increases the upper limit of the network's capacity, while the large kernel convolution facilitates the extraction of highly abstract patterns, leading to compact normal feature modeling. Additionally, we introduce an Adaptive Contraction Loss (ADCLoss), tailored to FRADs to overcome the limitations of global cosine distance loss. MiniMaxAD was comprehensively tested across six challenging UAD benchmarks, achieving state-of-the-art results in four and highly competitive outcomes in the remaining two. Notably, our model achieved a detection AUROC of up to 97.0\% in ViSA under the unified setting. Moreover, it not only achieved state-of-the-art performance in unmanned supermarket tasks but also exhibited an inference speed 37 times faster than the previous best method, demonstrating its effectiveness in complex UAD tasks.
- Abstract(参考訳): 例えば、データセット内のクラスには複数のサブクラスが含まれており、FRAD(Feature-Rich Anomaly Detection Datasets)に分類される。
これは統一された設定や無人スーパーマーケットのシナリオのような応用で明らかである。
この課題に対処するため,我々は,通常の画像から広範囲の情報を効率よく圧縮・記憶する軽量オートエンコーダMiniMaxADを開発した。
本モデルは,Global Response Normalization (GRN) ユニットを備えた大規模なカーネル畳み込みネットワークを利用し,マルチスケールな特徴再構築戦略を採用している。
GRNユニットはネットワーク容量の上限を大幅に増加させ、大きなカーネル畳み込みは高度に抽象的なパターンの抽出を促進する。
さらに,グローバルなコサイン距離損失の限界を克服するために,FRADに適した適応契約損失(adaptive Contraction Loss,ADCLoss)を導入する。
MiniMaxADは6つの挑戦的 UAD ベンチマークで総合的にテストされ、残りの2つで4つの非常に競争力のある結果が得られた。
特に,本モデルでは,ViSAにおいて最大97.0\%のAUROCを統一条件下で検出した。
さらに, 無人スーパーの作業における最先端性能だけでなく, 従来の最良手法の37倍の推算速度を示し, 複雑なUAD作業における実効性を示した。
関連論文リスト
- Feature Attenuation of Defective Representation Can Resolve Incomplete Masking on Anomaly Detection [1.0358639819750703]
教師なし異常検出(UAD)研究では、計算効率が高くスケーラブルなソリューションを開発する必要がある。
再建・塗り替えのアプローチを再考し、強みと弱みを分析して改善する。
異常再構成の特徴情報を減衰させる2つの層のみを用いるFADeR(Feature Attenuation of Defective Representation)を提案する。
論文 参考訳(メタデータ) (2024-07-05T15:44:53Z) - AMFD: Distillation via Adaptive Multimodal Fusion for Multispectral Pedestrian Detection [23.91870504363899]
マルチスペクトル検出におけるダブルストリームネットワークは、マルチモーダルデータに2つの異なる特徴抽出枝を用いる。
これにより、組み込みデバイスにおける多スペクトル歩行者検出が自律システムに広く採用されるのを妨げている。
本稿では,教師ネットワークの本来のモーダル特徴を完全に活用できる適応型モーダル核融合蒸留(AMFD)フレームワークについて紹介する。
論文 参考訳(メタデータ) (2024-05-21T17:17:17Z) - Learning Feature Inversion for Multi-class Anomaly Detection under General-purpose COCO-AD Benchmark [101.23684938489413]
異常検出(AD)は、しばしば産業品質検査や医学的病変検査のための異常の検出に焦点が当てられている。
この研究はまず、COCOをADフィールドに拡張することにより、大規模で汎用的なCOCO-ADデータセットを構築する。
セグメンテーション分野のメトリクスにインスパイアされた我々は、より実用的なしきい値に依存したAD固有のメトリクスをいくつか提案する。
論文 参考訳(メタデータ) (2024-04-16T17:38:26Z) - Simple Ingredients for Offline Reinforcement Learning [86.1988266277766]
オフライン強化学習アルゴリズムは、ターゲット下流タスクに高度に接続されたデータセットに有効であることが証明された。
既存の手法が多様なデータと競合することを示す。その性能は、関連するデータ収集によって著しく悪化するが、オフラインバッファに異なるタスクを追加するだけでよい。
アルゴリズム的な考慮以上のスケールが、パフォーマンスに影響を及ぼす重要な要因であることを示す。
論文 参考訳(メタデータ) (2024-03-19T18:57:53Z) - Unraveling the "Anomaly" in Time Series Anomaly Detection: A
Self-supervised Tri-domain Solution [89.16750999704969]
異常ラベルは時系列異常検出において従来の教師付きモデルを妨げる。
自己教師型学習のような様々なSOTA深層学習技術がこの問題に対処するために導入されている。
自己教師型3領域異常検出器(TriAD)を提案する。
論文 参考訳(メタデータ) (2023-11-19T05:37:18Z) - Small Object Detection via Coarse-to-fine Proposal Generation and
Imitation Learning [52.06176253457522]
本稿では,粗粒度パイプラインと特徴模倣学習に基づく小型物体検出に適した2段階フレームワークを提案する。
CFINetは、大規模な小さなオブジェクト検出ベンチマークであるSODA-DとSODA-Aで最先端の性能を達成する。
論文 参考訳(メタデータ) (2023-08-18T13:13:09Z) - Enhancing Representation Learning on High-Dimensional, Small-Size
Tabular Data: A Divide and Conquer Method with Ensembled VAEs [7.923088041693465]
特徴空間の部分集合の後方部分集合を学習するための軽量なVAEのアンサンブルを, 新規な分割コンカレントアプローチで結合後部分集合に集約する。
このアプローチは推論時に部分的な機能に対して堅牢であることを示し、ほとんどの機能が欠落していても、パフォーマンスの劣化がほとんどないことを示します。
論文 参考訳(メタデータ) (2023-06-27T17:55:31Z) - Efficient Person Search: An Anchor-Free Approach [86.45858994806471]
パーソンサーチは、クエリーの人物を、リアルで切り刻まれていない画像から、同時にローカライズし、識別することを目的としている。
この目標を達成するために、最先端モデルは通常、Faster R-CNNのような2段階検出器にre-idブランチを追加する。
本研究では,この課題に対処するためのアンカーフリーな手法を提案する。
論文 参考訳(メタデータ) (2021-09-01T07:01:33Z) - Loss Function Discovery for Object Detection via Convergence-Simulation
Driven Search [101.73248560009124]
本稿では,効率的な収束シミュレーションによる進化的探索アルゴリズムCSE-Autolossを提案する。
一般的な検出器上での損失関数探索の広範囲な評価を行い、探索された損失の優れた一般化能力を検証した。
実験の結果, 2段検出器と1段検出器のmAPでは, 最適損失関数の組み合わせが1.1%と0.8%を上回っていることがわかった。
論文 参考訳(メタデータ) (2021-02-09T08:34:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。