MiniMaxAD: A Lightweight Autoencoder for Feature-Rich Anomaly Detection
- URL: http://arxiv.org/abs/2405.09933v3
- Date: Mon, 30 Sep 2024 04:17:02 GMT
- Title: MiniMaxAD: A Lightweight Autoencoder for Feature-Rich Anomaly Detection
- Authors: Fengjie Wang, Chengming Liu, Lei Shi, Pang Haibo,
- Abstract summary: MiniMaxAD is a lightweight autoencoder designed to efficiently compress and memorize extensive information from normal images.
Our model employs a technique that enhances feature diversity, thereby increasing the effective capacity of the network.
In our methodology, any dataset can be unified under the framework of feature-rich anomaly detection.
- Score: 1.7234530131333607
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Previous unsupervised anomaly detection (UAD) methods often struggle to handle the extensive diversity in training sets, particularly when they contain stylistically diverse and feature-rich samples, which we categorize as feature-rich anomaly detection datasets (FRADs). This challenge is evident in applications such as multi-view and multi-class scenarios. To address this challenge, we developed MiniMaxAD, a lightweight autoencoder designed to efficiently compress and memorize extensive information from normal images. Our model employs a technique that enhances feature diversity, thereby increasing the effective capacity of the network. It also utilizes large kernel convolution to extract highly abstract patterns, which contribute to efficient and compact feature embedding. Moreover, we introduce an Adaptive Contraction Hard Mining Loss (ADCLoss), specifically tailored to FRADs. In our methodology, any dataset can be unified under the framework of feature-rich anomaly detection, in a way that the benefits far outweigh the drawbacks. Our approach has achieved state-of-the-art performance in multiple challenging benchmarks.
Related papers
- Learning Multi-view Multi-class Anomaly Detection [10.199404082194947]
We introduce a Multi-View Multi-Class Anomaly Detection model (MVMCAD), which integrates information from multiple views to accurately identify anomalies.
Specifically, we propose a semi-frozen encoder, where a pre-encoder prior enhancement mechanism is added before the frozen encoder.
An Anomaly Amplification Module (AAM) that models global token interactions and suppresses normal regions, and a Cross-Feature Loss that aligns shallow encoder features with deep decoder features.
arXiv Detail & Related papers (2025-04-30T03:59:58Z) - Optimizing Multispectral Object Detection: A Bag of Tricks and Comprehensive Benchmarks [49.84182981950623]
Multispectral object detection, utilizing RGB and TIR (thermal infrared) modalities, is widely recognized as a challenging task.
It requires not only the effective extraction of features from both modalities and robust fusion strategies, but also the ability to address issues such as spectral discrepancies.
We introduce an efficient and easily deployable multispectral object detection framework that can seamlessly optimize high-performing single-modality models.
arXiv Detail & Related papers (2024-11-27T12:18:39Z) - Feature Attenuation of Defective Representation Can Resolve Incomplete Masking on Anomaly Detection [1.0358639819750703]
In unsupervised anomaly detection (UAD) research, it is necessary to develop a computationally efficient and scalable solution.
We revisit the reconstruction-by-inpainting approach and rethink to improve it by analyzing strengths and weaknesses.
We propose Feature Attenuation of Defective Representation (FADeR) that only employs two layers which attenuates feature information of anomaly reconstruction.
arXiv Detail & Related papers (2024-07-05T15:44:53Z) - Learning Feature Inversion for Multi-class Anomaly Detection under General-purpose COCO-AD Benchmark [101.23684938489413]
Anomaly detection (AD) is often focused on detecting anomalies for industrial quality inspection and medical lesion examination.
This work first constructs a large-scale and general-purpose COCO-AD dataset by extending COCO to the AD field.
Inspired by the metrics in the segmentation field, we propose several more practical threshold-dependent AD-specific metrics.
arXiv Detail & Related papers (2024-04-16T17:38:26Z) - Few-shot Online Anomaly Detection and Segmentation [29.693357653538474]
This paper focuses on addressing the challenging yet practical few-shot online anomaly detection and segmentation (FOADS) task.
Under the FOADS framework, models are trained on a few-shot normal dataset, followed by inspection and improvement of their capabilities by leveraging unlabeled streaming data containing both normal and abnormal samples simultaneously.
In order to achieve improved performance with limited training samples, we employ multi-scale feature embedding extracted from a CNN pre-trained on ImageNet to obtain a robust representation.
arXiv Detail & Related papers (2024-03-27T02:24:00Z) - Open-Vocabulary Video Anomaly Detection [57.552523669351636]
Video anomaly detection (VAD) with weak supervision has achieved remarkable performance in utilizing video-level labels to discriminate whether a video frame is normal or abnormal.
Recent studies attempt to tackle a more realistic setting, open-set VAD, which aims to detect unseen anomalies given seen anomalies and normal videos.
This paper takes a step further and explores open-vocabulary video anomaly detection (OVVAD), in which we aim to leverage pre-trained large models to detect and categorize seen and unseen anomalies.
arXiv Detail & Related papers (2023-11-13T02:54:17Z) - Beyond the Benchmark: Detecting Diverse Anomalies in Videos [0.6993026261767287]
Video Anomaly Detection (VAD) plays a crucial role in modern surveillance systems, aiming to identify various anomalies in real-world situations.
Current benchmark datasets predominantly emphasize simple, single-frame anomalies such as novel object detection.
We advocate for an expansion of VAD investigations to encompass intricate anomalies that extend beyond conventional benchmark boundaries.
arXiv Detail & Related papers (2023-10-03T09:22:06Z) - Exploiting Modality-Specific Features For Multi-Modal Manipulation
Detection And Grounding [54.49214267905562]
We construct a transformer-based framework for multi-modal manipulation detection and grounding tasks.
Our framework simultaneously explores modality-specific features while preserving the capability for multi-modal alignment.
We propose an implicit manipulation query (IMQ) that adaptively aggregates global contextual cues within each modality.
arXiv Detail & Related papers (2023-09-22T06:55:41Z) - Small Object Detection via Coarse-to-fine Proposal Generation and
Imitation Learning [52.06176253457522]
We propose a two-stage framework tailored for small object detection based on the Coarse-to-fine pipeline and Feature Imitation learning.
CFINet achieves state-of-the-art performance on the large-scale small object detection benchmarks, SODA-D and SODA-A.
arXiv Detail & Related papers (2023-08-18T13:13:09Z) - UniFormaly: Towards Task-Agnostic Unified Framework for Visual Anomaly
Detection [6.260747047974035]
We present UniFormaly, a universal and powerful anomaly detection framework.
We emphasize the necessity of our off-the-shelf approach by pointing out a suboptimal issue in online encoder-based methods.
UniFormaly achieves outstanding results on various tasks and datasets.
arXiv Detail & Related papers (2023-07-24T06:04:12Z) - Multi-Scale Positive Sample Refinement for Few-Shot Object Detection [61.60255654558682]
Few-shot object detection (FSOD) helps detectors adapt to unseen classes with few training instances.
We propose a Multi-scale Positive Sample Refinement (MPSR) approach to enrich object scales in FSOD.
MPSR generates multi-scale positive samples as object pyramids and refines the prediction at various scales.
arXiv Detail & Related papers (2020-07-18T09:48:29Z) - SUOD: Accelerating Large-Scale Unsupervised Heterogeneous Outlier
Detection [63.253850875265115]
Outlier detection (OD) is a key machine learning (ML) task for identifying abnormal objects from general samples.
We propose a modular acceleration system, called SUOD, to address it.
arXiv Detail & Related papers (2020-03-11T00:22:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.